• Home
  • Cryptocurrency
    • Bitcoin
    • Ethereum
    • XRP
    • Litecoin
    • Altcoin
    • Cardano
    • Tether
    • DOGE
    • Solano
    • XLM
    • DOT
    • XDC
    • SHIBA
    • BNB
    • Ape
    • HBAR
    • QNT
  • Blockchain
  • Regulation
  • Market
  • Live
    • Prices
    • ICO
  • Meta
    • NFT
  • Technical Analysis
    • XRP
    • BTC
    • XLM
    • ADA
    • TETHER
    • ETC
    • ETH
    • DOGE
    • LTC
  • Exchange
  • Mining
Friday, September 12, 2025
  • Login
  • Register
Coin24h.com
  • Home
  • Cryptocurrency
    • Bitcoin
    • Ethereum
    • XRP
    • Litecoin
    • Altcoin
    • Cardano
    • Tether
    • DOGE
    • Solano
    • XLM
    • DOT
    • XDC
    • SHIBA
    • BNB
    • Ape
    • HBAR
    • QNT
  • Blockchain
  • Regulation
  • Market
  • Live
    • Prices
    • ICO
  • Meta
    • NFT
  • Technical Analysis
    • XRP
    • BTC
    • XLM
    • ADA
    • TETHER
    • ETC
    • ETH
    • DOGE
    • LTC
  • Exchange
  • Mining
No Result
View All Result
  • Home
  • Cryptocurrency
    • Bitcoin
    • Ethereum
    • XRP
    • Litecoin
    • Altcoin
    • Cardano
    • Tether
    • DOGE
    • Solano
    • XLM
    • DOT
    • XDC
    • SHIBA
    • BNB
    • Ape
    • HBAR
    • QNT
  • Blockchain
  • Regulation
  • Market
  • Live
    • Prices
    • ICO
  • Meta
    • NFT
  • Technical Analysis
    • XRP
    • BTC
    • XLM
    • ADA
    • TETHER
    • ETC
    • ETH
    • DOGE
    • LTC
  • Exchange
  • Mining
No Result
View All Result
Coin24h.com
No Result
View All Result
Ledger Nano X - The secure hardware wallet
ADVERTISEMENT

Acoustic stability of a self-gravitating cylinder leading to astrostructure formation

3 May 2023
in HBAR
Reading Time: 28 mins read
A A
0
Acoustic stability of a self-gravitating cylinder leading to astrostructure formation
189
SHARES
1.5k
VIEWS
Share on FacebookShare on Twitter
cryptotrader
ADVERTISEMENT
Cryptohopper
ADVERTISEMENT

We linearly perturb the relevant physical fluid parameters appearing in Eqs. (14), (15.1), (15.2), (16), (17), (18) and (19), using a cylindrical wave analysis24 in an autonormalized Fourier transformed wavespace given as

$$F\left( {R,\,\tau } \right) = F_{0} + \,F_{1} \left( {R,\,\tau } \right)\, = F_{0} + F_{10} \exp \left( { – i\Omega \tau } \right)H_{0}^{\left( 1 \right)} \left( {k^{*} R} \right)\,\,,$$

(20)

where \(H_{0}^{\left( 1 \right)}\) is the Hankel function of the first kind, of order 0.

For \(R \to 0\), \(H_{0}^{\left( 1 \right)}\) has logarithmic singularity:

$$H_{0}^{\left( 1 \right)} = \left( {2i\pi^{ – 1} } \right)\log \left( {k^{*} R} \right)$$

(21)

At large distances, we have

$$H_{0}^{\left( 1 \right)} = \left( {2\pi^{ – 1} } \right)^{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2}}} \left( {k^{*} R} \right)^{{ – {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2}}} \exp \left[ {i\left( {k^{*} R – \pi 4^{ – 1} } \right)} \right]$$

(22)

Thus, Eq. (20) gets modified as

$$F\left( {R,\,\tau } \right) = F_{0} + \,F_{1} \left( {R,\,\tau } \right)\, = F_{0} + F_{10} \left( {2\pi^{ – 1} } \right)^{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2}}} \left( {k^{*} R} \right)^{{ – {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2}}} \exp \left[ {i\left( {k^{*} R – \Omega \tau – \pi 4^{ – 1} } \right)} \right]\,,$$

(23)

$$F = \left[ {N_{s} \,\,\,\,\,\,\,\,M_{s} \,\,\,\,\,\,\,\,\Phi_{E} \,\,\,\,\,\,\,\,\,\,\Psi } \right]^{T} ,$$

(24)

$$F_{0} = \left[ {1\,\,\,\,\,\,\,\,\,\,\,0\,\,\,\,\,\,\,\,\,\,\,\,\,\,0\,\,\,\,\,\,\,\,\,\,\,\,0\,} \right]^{T} \,,$$

(25)

$$F_{1} = \left[ {N_{s1} \,\,\,\,M_{s1} \,\,\,\,\,\,\Phi_{E1} \,\,\,\,\,\,\,\Psi_{1} \,} \right]^{T} .$$

(26)

Here, we assume an axisymmetric cylinder such that all quantities are homogeneously distributed along z-direction, and thereby just show radial variations. In Eq. (23), F1 denotes the radial perturbations, which evolve as per the Hankel function of first kind of order 0. F0 denotes the equilibrium values corresponding to which perturbations F1 take place. In the new Fourier transformed wavespace, the spatial and temporal operators get transformed as \({\partial \mathord{\left/ {\vphantom {\partial {\partial R \to \left( {\,ik^{*} – \,\,{1 \mathord{\left/ {\vphantom {1 R}} \right. \kern-0pt} R}} \right)}}} \right. \kern-0pt} {\partial R \to \left( {\,ik^{*} – \,\,{1 \mathord{\left/ {\vphantom {1 R}} \right. \kern-0pt} R}} \right)}}\) and \({\partial \mathord{\left/ {\vphantom {\partial {\partial \tau \to \left( { – i\,\,\Omega } \right)}}} \right. \kern-0pt} {\partial \tau \to \left( { – i\,\,\Omega } \right)}}\), respectively. Here, \(\Omega\) \(\left( {{{ = \omega } \mathord{\left/ {\vphantom {{ = \omega } {\omega_{pi} }}} \right. \kern-0pt} {\omega_{pi} }}} \right)\) denotes the normalized fluctuation frequency and \(k^{*} \left( {\sim {k \mathord{\left/ {\vphantom {k {L_{0}^{ – 1} }}} \right. \kern-0pt} {L_{0}^{ – 1} }}} \right)\) designates the normalized wavenumber. The linearly perturbed relevant physical parameters from Eqs. (14), (15.1), (15.2), (16), (17), (18) and (19) in the new wave space can respectively be cast as

$$N_{e1} = – i\Omega^{ – 1} \left\{ {ik^{*} + \,\left( {2R} \right)^{ – 1} \,} \right\}M_{e1} ,$$

(27)

$$M_{e1} = E^{ – 1} \left( {m_{i} m_{e}^{ – 1} } \right)\left\{ {ik^{*} – \,\left( {2R} \right)^{ – 1} \,} \right\}\Phi_{E1} – iE^{ – 1} \Omega^{ – 1} \sigma \left\{ {k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}\left\{ { – k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}^{ – 1} M_{i1} ,$$

(28)

$$N_{i1} = – i\Omega^{ – 1} \left\{ {ik^{*} + \,\left( {2R} \right)^{ – 1} \,} \right\}M_{i1} ,$$

(29)

$$M_{i1} = – H^{ – 1} \left\{ {ik^{*} – \,\left( {2R} \right)^{ – 1} \,} \right\}\Phi_{E1} \left[ {1 + i\Omega^{ – 1} E^{ – 1} \sigma \left\{ {k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}\left\{ { – k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}^{ – 1} } \right],$$

(30)

$$\Phi_{E1} = – i\Omega^{ – 1} \left\{ {ik^{*} + \,\left( {2R} \right)^{ – 1} \,} \right\}\left\{ { – k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}^{ – 1} \left( {M_{e1} – M_{i1} } \right),$$

(31)

$$\Psi_{1} = – i\Omega^{ – 1} \sigma \left\{ {ik^{*} + \,\left( {2R} \right)^{ – 1} \,} \right\}\left\{ { – k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}^{ – 1} \left\{ {\left( {m_{e} m_{i}^{ – 1} } \right)M_{e1} + M_{i1} } \right\}.$$

(32)

In the above set of Eqs. (27), (28), (29), (30), (31) and (32), the various substituted terms are given as

$$E = – i\Omega + i\Omega^{ – 1} \left\{ {ik^{*} + \,\left( {2R} \right)^{ – 1} \,} \right\}\left. {\left[ {{ – }\Omega_{ge}^{*} M_{e\varphi } + 4^{ – 1} H_{p}^{2} B_{p} + 2M_{\varphi } \omega_{z}^{*} + } \right.\left\{ {ik^{*} – \,\left( {2R} \right)^{ – 1} \,} \right\}\left[ {\alpha – \left\{ { – k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}^{ – 1} \sigma m_{e} m_{i}^{ – 1} } \right]} \right]$$

(33)

$$B_{p} = – ik^{{*^{3} }} + k^{{*^{2} }} \left( {2R} \right)^{ – 1} + ik^{*} \left( {4R^{2} } \right)^{ – 1} – 5\left( {8R^{3} } \right)^{ – 1}$$

(34)

$$\alpha = \left( 3 \right)^{ – 1} M_{Fe}^{2} ,\,{\text{for CDcase}},{\text{ where}}\,M_{Fe} = {{v_{Fe} } \mathord{\left/ {\vphantom {{v_{Fe} } {c_{s} }}} \right. \kern-0pt} {c_{s} }}\,{\text{and}}\,v_{Fe} = \left( {3\pi^{2} n_{e} } \right)^{{{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-0pt} 3}}} \hbar \,m_{e}^{ – 1}$$

(35)

$$\alpha = m_{i} m_{e}^{ – 1} T^{*} ,\,{\text{for CND}}\,{\text{case, }}$$

(36)

$$\begin{aligned} H = & – i\Omega + i\Omega^{ – 1} \left\{ {ik^{*} + \,\left( {2R} \right)^{ – 1} \,} \right\}\left. {\left[ {\Omega_{gi}^{*} M_{i\varphi } + 2M_{\varphi } \omega_{z}^{*} + } \right.\left\{ {ik^{*} – \,\left( {2R} \right)^{ – 1} \,} \right\}\left[ {T^{*} – \sigma \left\{ { – k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}^{ – 1} } \right]} \right] \\ & – \left\{ { – k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}\eta^{*} + \Omega^{ – 2} \left\{ {k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}^{2} \left\{ { – k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}^{ – 2} \sigma^{2} m_{e} m_{i}^{ – 1} E^{ – 1} \\ \end{aligned}$$

(37)

After a standard procedure of elimination and substitution among Eqs. (27), (28), (29), (30), (31), (32), (33), (34), (35), (36) and (37), we obtain a generalized linear sextic dispersion relation cast as

$$\Omega^{6} + A_{5} \Omega^{5} + A_{4} \Omega^{4} + A_{3} \Omega^{3} + A_{2} \Omega^{2} + A_{1} \Omega + A_{0} = 0$$

(38)

The different coefficients in an expanded form are given as

$$A_{5} = – i\left\{ {k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}\,\eta^{*}$$

(39)

$$A_{4} = \left\{ {ik^{*} + \,\left( {2R} \right)^{ – 1} \,} \right\}\,\,\left[ { – 2\Omega_{ge}^{*} M_{e\varphi }^{*} + \left( {2\alpha + T^{*} } \right)} \right.\left\{ {ik^{*} – \,\left( {2R} \right)^{ – 1} \,} \right\} – 2^{ – 1} H_{p}^{2} B_{p} + 6M_{\varphi } \omega_{z}^{*} + \Omega_{gi}^{*} M_{i\varphi }^{*}$$

$$\left. { + \left\{ {ik^{*} – \,\left( {2R} \right)^{ – 1} \,} \right\}\left\{ { – k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}^{ – 1} \left\{ {m_{i} m_{e}^{ – 1} + 1 – \sigma \left( {2m_{e} m_{i}^{ – 1} + 1} \right)} \right\}} \right]$$

(40)

$$A_{3} = – i\left\{ {ik^{*} + \,\left( {2R} \right)^{ – 1} \,} \right\}\eta^{*} \left[ {\left\{ { – k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}\,\,\,\left[ {2\Omega_{ge}^{*} M_{e\varphi }^{*} + 2^{ – 1} H_{p}^{2} B_{p} – 4M_{\varphi } \omega_{z}^{*} – 2\alpha \left\{ {ik^{*} – \,\left( {2R} \right)^{ – 1} \,} \right\}} \right]} \right.$$

$$\left. { + \left\{ {ik^{*} – \,\left( {2R} \right)^{ – 1} \,} \right\}\left( {2\sigma m_{e} m_{i}^{ – 1} – m_{i} m_{e}^{ – 1} } \right)} \right],$$

(41)

$$A_{2} = – \left\{ {ik^{*} + \,\left( {2R} \right)^{ – 1} \,} \right\}^{2} \left[ {\,\left\{ {ik^{*} – \,\left( {2R} \right)^{ – 1} \,} \right\}\,\left[ { – 2\alpha \,\left( {\Omega_{ge}^{*} M_{e\varphi }^{*} – \Omega_{gi}^{*} M_{i\varphi }^{*} } \right) + 2^{ – 1} H_{p}^{2} B_{p} \alpha + 4M_{\varphi } \omega_{z}^{*} \left( {\alpha + T^{*} } \right)} \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,} \right.$$

$$- 2\left( {\Omega_{ge}^{*} M_{e\varphi }^{*} T^{*} – 2M_{\varphi } \omega_{z}^{*} \alpha } \right) – 2^{ – 1} T^{*} H_{p}^{2} B_{p} + \left\{ { – k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}^{ – 1} \left[ {2\Omega_{ge}^{*} M_{e\varphi } \sigma \left( {1 + m_{e} m_{i}^{ – 1} } \right)} \right.$$

$$- 2^{ – 1} H_{p}^{2} B_{p} \sigma \left( { – 1 + m_{e} m_{i}^{ – 1} } \right) – 2\sigma \left\{ {\left( {\Omega_{gi}^{*} M_{i\varphi } + 4M_{\varphi } \omega_{z}^{*} } \right)m_{e} m_{i}^{ – 1} + 2M_{\varphi } \omega_{z}^{*} } \right\} + 2\left\{ {\Omega_{ge}^{*} M_{e\varphi } + 2M_{\varphi } \omega_{z}^{*} } \right.$$

$$\left. {\left. {\left. { – 4^{ – 1} H_{p}^{2} B_{p} } \right\} + m_{i} m_{e}^{ – 1} \left( {\Omega_{gi}^{*} M_{i\varphi } + 4M_{\varphi } \omega_{z}^{*} – \Omega_{ge}^{*} M_{e\varphi } + 4^{ – 1} H_{p}^{2} B_{p} } \right)} \right]\,\,} \right]\, + \left\{ {ik^{*} – \,\left( {2R} \right)^{ – 1} \,} \right\}^{2} \left[ {\alpha^{2} } \right.$$

$$+ 2\alpha T^{*} + \left\{ { – k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}^{ – 1} \left[ { – 2\sigma \left\{ {\left( {T^{*} + 1} \right)m_{e} m_{i}^{ – 1} + 1} \right\}} \right. + 2\alpha + m_{i} m_{e}^{ – 1} \left. {\left( {T^{*} + \alpha } \right)} \right] + \left\{ { – k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}^{ – 2}$$

$$\left. {\left[ { – \sigma \left( {1 + m_{i} m_{e}^{ – 1} } \right)} \right. – 2\sigma m_{e} m_{i}^{ – 1} + \sigma^{2} m_{e} m_{i}^{ – 1} \left. {\left( {1 + m_{e} m_{i}^{ – 1} } \right) + 2\sigma } \right]\,\,} \right] – 2^{ – 1} H_{p}^{2} B_{p} \left( {\Omega_{ge}^{*} M_{e\varphi }^{*} + \Omega_{gi}^{*} M_{i\varphi }^{*} } \right)$$

$$\left. { – 8M_{\varphi } \omega_{z}^{*} \Omega_{ge}^{*} M_{e\varphi } + \left( {\Omega_{ge}^{*} M_{e\varphi }^{*} } \right)^{2} + \left( {4^{ – 1} H_{p}^{2} B_{p} } \right)^{2} + 2\Omega_{gi}^{*} M_{i\varphi } \left( { – \Omega_{ge}^{*} M_{e\varphi }^{*} + 2M_{\varphi } \omega_{z}^{*} } \right) + 12\left( {M_{\varphi } \omega_{z}^{*} } \right)^{2} } \right],$$

(42)

$$A_{1} = – i\left\{ {ik^{*} + \,\left( {2R} \right)^{ – 1} \,} \right\}^{2} \eta^{*} \,\left[ {\,\left[ {\left\{ {ik^{*} – \,\left( {2R} \right)^{ – 1} \,} \right\}\left[ {\left( {\Omega_{ge}^{*} M_{e\varphi } – 4^{ – 1} H_{p}^{2} B_{p} – 2M_{\varphi } \omega_{z}^{*} } \right)\left[ {2\sigma m_{e} m_{i}^{ – 1} – m_{i} m_{e}^{ – 1} } \right.} \right.} \right.} \right.$$

$$\left. {\left. { – 2\alpha \left\{ { – k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}} \right]\,\,} \right]\, + \left\{ { – k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}\,\,\left[ {\Omega_{ge}^{*} M_{e\varphi } \left( {\Omega_{ge}^{*} M_{e\varphi } – 2^{ – 1} H_{p}^{2} B_{p} – 4M_{\varphi } \omega_{z}^{*} } \right)} \right.$$

$$\left. {\left. { + 4^{ – 1} H_{p}^{2} B_{p} \left( {4^{ – 1} H_{p}^{2} B_{p} + 4M_{\varphi } \omega_{z}^{*} } \right) + 4\left( {M_{\varphi } \omega_{z}^{*} } \right)^{2} } \right]\,\,} \right] + \left\{ {ik^{*} – \,\left( {2R} \right)^{ – 1} \,} \right\}^{2} \left[ { – 2\alpha \sigma \,m_{e} m_{i}^{ – 1} } \right. + \alpha \,m_{i} m_{e}^{ – 1}$$

$$\left. {\left. { + \left\{ { – k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}^{ – 1} \left( {\sigma \,m_{e} m_{i}^{ – 1} – m_{i} m_{e}^{ – 1} } \right) + 2\alpha^{2} \left\{ { – k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}} \right]\,\,} \right]$$

(43)

$$A_{0} = \left[ { – P + \left[ {\left\{ {k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}\left\{ { – k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}^{ – 1} m_{i} m_{e}^{ – 1} Q} \right] + \left[ {2\left\{ {k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}^{2} \left\{ { – k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}^{ – 2} \sigma S} \right]} \right.$$

$$\left. { – \left[ {\left\{ {k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}^{3} \left\{ { – k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}^{ – 2} \sigma^{2} } \right] + \left[ {\left\{ {k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}\left\{ { – k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}^{ – 1} I} \right]} \right]$$

(44)

The different terms substituted in A0 are given in an expanded form as

$$P = – \left\{ {ik^{*} + \,\left( {2R} \right)^{ – 1} \,} \right\}^{3} \left[ {\left\{ {ik^{*} – \,\left( {2R} \right)^{ – 1} \,} \right\}\left[ {\,\left[ {2\alpha \Omega_{gi}^{*} M_{i\varphi } \left( {\Omega_{ge}^{*} M_{e\varphi } – 2M_{\varphi } \omega_{z}^{*} } \right)} \right.} \right.} \right. – 4^{ – 1} H_{p}^{2} B_{p} \left\{ {2\alpha \Omega_{gi}^{*} M_{i\varphi } } \right. + 4\left. {\left( {T^{*} + \alpha } \right)M_{\varphi } \omega_{z}^{*} } \right\}$$

$$- \Omega_{ge}^{*} M_{e\varphi } T^{*} \left( {\Omega_{ge}^{*} M_{e\varphi } – 4M_{\varphi } \omega_{z}^{*} } \right) – 4^{ – 1} H_{p}^{2} B_{p} T^{*} \left\{ { – 2\Omega_{ge}^{*} M_{e\varphi } } \right. + \left. {4^{ – 1} H_{p}^{2} B_{p} } \right\} – 4M_{\varphi } \omega_{z}^{*} \left\{ {T^{*} } \right.M_{\varphi } \omega_{z}^{*}$$

$$\left. {\left. { + \left( {2M_{\varphi } \omega_{z}^{*} – \Omega_{ge}^{*} M_{e\varphi } } \right)\alpha } \right\}} \right]\, + \left\{ { – k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}^{ – 1} \left[ { – 2\Omega_{gi}^{*} M_{i\varphi } \sigma \,m_{e} m_{i}^{ – 1} \left( {\Omega_{ge}^{*} M_{e\varphi } – 4^{ – 1} H_{p}^{2} B_{p} – 4M_{\varphi } \omega_{z}^{*} } \right)} \right.$$

$$- 4\sigma m_{e} m_{i}^{ – 1} M_{\varphi } \omega_{z}^{*} \left( {\Omega_{ge}^{*} M_{e\varphi } – 4^{ – 1} H_{p}^{2} B_{p} – 2M_{\varphi } \omega_{z}^{*} } \right) + \sigma 4^{ – 1} H_{p}^{2} B_{p} \left( {4^{ – 1} H_{p}^{2} B_{p} + 4M_{\varphi } \omega_{z}^{*} } \right)$$

$$\left. {\left. { – 2\Omega_{ge}^{*} M_{e\varphi } \sigma \left\{ {2M_{\varphi } \omega_{z}^{*} \left( {1 – M_{\varphi } \omega_{z}^{*} } \right) + 4^{ – 1} H_{p}^{2} B_{p} – 2^{ – 1} \Omega_{ge}^{*} M_{e\varphi } } \right\}} \right]\,} \right] + \left\{ {ik^{*} – \,\left( {2R} \right)^{ – 1} \,} \right\}^{2} \left[ {\left[ { – \alpha \left( {\alpha \Omega_{gi}^{*} M_{i\varphi } } \right.} \right.} \right.$$

$$\left. {\left. { – 2\Omega_{ge}^{*} M_{e\varphi } T^{*} + \,\,2\alpha M_{\varphi } \omega_{z}^{*} \,} \right) – 2\alpha T^{*} \left( {2M_{\varphi } \omega_{z}^{*} + 4^{ – 1} H_{p}^{2} B_{p} } \right)} \right] + \left\{ { – k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}^{ – 1} \left[ {\sigma m_{e} m_{i}^{ – 1} } \right.\left\{ {\Omega_{gi}^{*} M_{i\varphi } \alpha \,} \right.$$

$$\left. {\left. { + T^{*} \left( {2M_{\varphi } \omega_{z}^{*} – \Omega_{ge}^{*} M_{e\varphi } } \right.} \right) + m_{i} m_{e}^{ – 1} \alpha 4^{ – 1} H_{p}^{2} B_{p} } \right\} + \sigma m_{e} m_{i}^{ – 1} \left\{ {2^{ – 1} H_{p}^{2} B_{p} T + 4\alpha M_{\varphi } \omega_{z}^{*} + 2} \right.m_{i} m_{e}^{ – 1} \left( {2\alpha } \right.M_{\varphi } \omega_{z}^{*}$$

$$\left. {\left. {\left. { – \Omega_{ge}^{*} M_{e\varphi } } \right)} \right\}} \right] + \left\{ { – k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}^{ – 2} \left[ { – \sigma^{2} \left( {m_{e} m_{i}^{ – 1} } \right)^{2} } \right.\left( {\Omega_{{{\text{gi}}}}^{*} M_{i\varphi } – 2m_{i} m_{e}^{ – 1} \Omega_{{{\text{ge}}}}^{*} M_{e\varphi } + 2M_{\varphi } \omega_{z}^{*} } \right) + \sigma^{2} m_{e} m_{i}^{ – 1}$$

$$\left. {\left. {\left( {2^{ – 1} M_{\varphi } \omega_{z}^{*} + \Omega_{ge}^{*} M_{e\varphi } \, + 4^{ – 1} H_{p}^{2} B_{p} } \right)} \right]\,} \right]\,\, + \left\{ {ik^{*} – \,\left( {2R} \right)^{ – 1} \,} \right\}^{3} \left[ { – \alpha^{2} } \right.T^{*} + \left\{ { – k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}^{ – 1} \left( {2\alpha \sigma m_{e} m_{i}^{ – 1} T^{*} + \alpha^{2} \sigma^{2} } \right)$$

$$\left. { + \left\{ { – k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}^{ – 2} \left\{ { – T^{*} \sigma^{2} \left( {m_{e} m_{i}^{ – 1} } \right)^{2} – \alpha \sigma^{2} m_{e} m_{i}^{ – 1} } \right\}} \right]\, + \Omega_{{{\text{gi}}}}^{*} M_{i\varphi } \Omega_{{{\text{ge}}}}^{*} M_{e\varphi } \left( { – \Omega_{{{\text{ge}}}}^{*} M_{e\varphi } + 4M_{\varphi } \omega_{z}^{*} } \right)$$

$$+ 2^{ – 1} H_{p}^{2} B_{p} \Omega_{{{\text{gi}}}}^{*} M_{i\varphi } \left( {\Omega_{{{\text{ge}}}}^{*} M_{e\varphi } – 2M_{\varphi } \omega_{z}^{*} } \right) – \Omega_{{{\text{gi}}}}^{*} M_{i\varphi } \left( {4^{ – 1} H_{p}^{2} B_{p} } \right)^{2} – 4\left( {M_{\varphi } \omega_{z}^{*} } \right)^{2} \left( {\Omega_{{{\text{gi}}}}^{*} M_{i\varphi } – 2\Omega_{{{\text{ge}}}}^{*} M_{e\varphi } + 2M_{\varphi } \omega_{z}^{*} } \right)$$

$$\left. { + 2\Omega_{{{\text{ge}}}}^{*} M_{e\varphi } M_{\varphi } \omega_{z}^{*} \left( { – \Omega_{{{\text{ge}}}}^{*} M_{e\varphi } + 2^{ – 1} H_{p}^{2} B_{p} } \right) – M_{\varphi } \omega_{z}^{*} 2^{ – 1} H_{p}^{2} B_{p} \left( {4^{ – 1} H_{p}^{2} B_{p} + 4M_{\varphi } \omega_{z}^{*} } \right)} \right]$$

(45)

$$\left[ {\left\{ {k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}\left\{ { – k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}^{ – 1} m_{i} m_{e}^{ – 1} Q} \right]$$

$$= – \left\{ {ik^{*} + \,\left( {2R} \right)^{ – 1} \,} \right\}^{3} \left[ {\left\{ {ik^{*} – \,\left( {2R} \right)^{ – 1} \,} \right\}} \right.\left\{ { – k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}^{ – 1} \left[ {m_{i} m_{e}^{ – 1} } \right.\Omega_{{{\text{ge}}}}^{*} M_{e\varphi } \left( {\Omega_{{{\text{gi}}}}^{*} M_{i\varphi } + 2M_{\varphi } \omega_{z}^{*} } \right)$$

$$\left. { – 4M_{\varphi } \omega_{z}^{*} m_{i} m_{e}^{ – 1} \left( {\Omega_{{{\text{gi}}}}^{*} M_{i\varphi } + M_{\varphi } \omega_{z}^{*} } \right) – m_{i} m_{e}^{ – 1} 2^{ – 1} H_{p}^{2} B_{p} M_{\varphi } \omega_{z}^{*} } \right] + \left\{ {ik^{*} – \,\left( {2R} \right)^{ – 1} \,} \right\}^{2} \left[ {\left\{ { – k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}^{ – 1} } \right.$$

$$\left. {\left[ {m_{i} m_{e}^{ – 1} \left\{ {\Omega_{{{\text{ge}}}}^{*} M_{e\varphi } – \alpha \left( {\Omega_{{{\text{gi}}}}^{*} M_{i\varphi } + 2M_{\varphi } \omega_{z}^{*} } \right)} \right\} – } \right.m_{i} m_{e}^{ – 1} T^{*} \left( {4^{ – 1} H_{p}^{2} B_{p} + 2M_{\varphi } \omega_{z}^{*} } \right)} \right] + \left\{ { – k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}^{ – 2}$$

$$\left. {\left[ { – \sigma m_{i} m_{e}^{ – 1} \left( {\Omega_{{{\text{ge}}}}^{*} M_{e\varphi } – 4^{ – 1} H_{p}^{2} B_{p} – 2M_{\varphi } \omega_{z}^{*} } \right) + \sigma \left( {\Omega_{{{\text{gi}}}}^{*} M_{i\varphi } + 2M_{\varphi } \omega_{z}^{*} } \right)} \right]\,} \right] + \left\{ {ik^{*} – \,\left( {2R} \right)^{ – 1} \,} \right\}^{3} \left[ { – \left\{ { – k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}^{ – 1} } \right.$$

$$\left. {\left. {\alpha m_{i} m_{e}^{ – 1} T^{*} + \left\{ { – k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}^{ – 2} \sigma m_{i} m_{e}^{ – 1} \left( {\alpha + m_{e} m_{i}^{ – 1} } \right)} \right]} \right]$$

(46)

$$\left[ {2\left\{ {k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}^{2} \left\{ { – k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}^{ – 2} \sigma S} \right]$$

$$= – 2\sigma \left\{ {ik^{*} + \,\left( {2R} \right)^{ – 1} \,} \right\}^{3} \left[ { – \left\{ {ik^{*} – \,\left( {2R} \right)^{ – 1} \,} \right\}^{2} } \right.\left\{ { – k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}^{ – 2} \left( {\Omega_{{{\text{ge}}}}^{*} M_{e\varphi } – 4^{ – 1} H_{p}^{2} B_{p} – 2M_{\varphi } \omega_{z}^{*} } \right)$$

$$\left. { + \left\{ {ik^{*} – \,\left( {2R} \right)^{ – 1} \,} \right\}^{3} \,\left\{ { – k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}^{ – 2} \left[ {\alpha – \sigma \left\{ { – k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}^{ – 1} m_{e} m_{i}^{ – 1} } \right]} \right],$$

(47)

$$\left[ {\left\{ {k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}\left\{ { – k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}^{ – 1} I} \right]$$

$$= – \left\{ {ik^{*} + \,\left( {2R} \right)^{ – 1} \,} \right\}^{3} \left[ {\left\{ {ik^{*} – \,\left( {2R} \right)^{ – 1} \,} \right\}} \right.\left\{ { – k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}^{ – 1} \left[ {\Omega_{{{\text{ge}}}}^{*} M_{e\varphi } \left( { – \Omega_{{{\text{ge}}}}^{*} M_{e\varphi } + 2^{ – 1} H_{p}^{2} B_{p} + 4M_{\varphi } \omega_{z}^{*} } \right)} \right.$$

$$\left. { – 4^{ – 1} H_{p}^{2} B_{p} \left( {4^{ – 1} H_{p}^{2} B_{p} + 4M_{\varphi } \omega_{z}^{*} } \right) – 4\left( {M_{\varphi } \omega_{z}^{*} } \right)^{2} } \right] + \left\{ {ik^{*} – \,\left( {2R} \right)^{ – 1} \,} \right\}^{2} \left[ { – \left\{ { – k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}^{ – 1} \left( { – \Omega_{{{\text{ge}}}}^{*} M_{e\varphi } } \right.} \right.$$

$$\left. {\left. { + 4^{ – 1} H_{p}^{2} B_{p} + 2M_{\varphi } \omega_{z}^{*} } \right) + \left\{ { – k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}^{ – 2} \left\{ { – 2\sigma \left. {m_{e} m_{i}^{ – 1} \left( {2\Omega_{{{\text{ge}}}}^{*} M_{e\varphi } – 4^{ – 1} H_{p}^{2} B_{p} – 2M_{\varphi } \omega_{z}^{*} } \right.} \right)} \right\}} \right]$$

$$\left. { + \left\{ {ik^{*} – \,\left( {2R} \right)^{ – 1} \,} \right\}^{3} \left[ { – \left\{ { – k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}^{ – 1} \alpha^{2} + \left\{ { – k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}^{ – 2} \left( {2\alpha \sigma m_{e} m_{i}^{ – 1} } \right) – \left\{ { – k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}^{ – 3} \left( {\sigma m_{e} m_{i}^{ – 1} } \right)^{2} } \right]} \right]$$

(48)

The sextic dispersion relation (Eq. (38)) is transformed into a reduced form in light of the LF approximation with the help of traditional simplification procedure34. We are primarily interested in the LF limit because we wish to investigate the cylindrical acoustic waves. In the LF limit \(\left( {\Omega^{q} = 0\,,\,\forall \,q > \,1} \right)\), the modified dispersion relation is

$$A_{1} \Omega + A_{0} = 0$$

(49)

The coefficients \(A_{1}\)–\(A_{0}\) are given in Eqs. (43) and (44), respectively. We then analyze the dispersion relation in four distinct regimes of our interest, namely in quantum (CD) non-planar (cylindrical), quantum planar, classical (CND) non-planar (cylindrical), classical (CND) planar.

Quantum (CD) non-planar regime

In the quantum non-planar regime, we have the same dispersion relation as given by Eq. (49). Likewise, the coefficients are the same as given by Eqs. (43) and (44).\(\alpha\) for the CD case is substituted from Eq. (35).

Quantum (CD) planar regime

In the quantum planar regime, we have \(R \to \infty\). The dispersion relation is the same as Eq. (49). However, the coefficients given by Eqs. (43) and (44) are modified. \(\alpha\) for the CD case is substituted from Eq. (35). The cylindrical coordinates are mapped into planar coordinates accordingly. The modified coefficients are given as

$$A_{1} = ik^{{*^{2} }} \eta^{*} \,\left[ {\,\left[ {\left( {ik^{*} } \right)\left[ {\left( {\Omega_{ge}^{*} M_{ey} – 4^{ – 1} H_{p}^{2} B_{p} – 2M_{y} \omega_{z}^{*} } \right)\left[ {2\sigma m_{e} m_{i}^{ – 1} – m_{i} m_{e}^{ – 1} } \right.} \right.} \right.} \right.\left. {\left. { + 2\alpha k^{{*^{2} }} } \right]\,} \right]$$

$$- k^{{*^{2} }} \,\,\left[ {\Omega_{ge}^{*} M_{ey} \left( {\Omega_{ge}^{*} M_{ey} – 2^{ – 1} H_{p}^{2} B_{p} – 4M_{y} \omega_{z}^{*} } \right)} \right.\left. {\left. { + 4^{ – 1} H_{p}^{2} B_{p} \left( {4^{ – 1} H_{p}^{2} B_{p} + 4M_{y} \omega_{z}^{*} } \right) + 4\left( {M_{y} \omega_{z}^{*} } \right)^{2} } \right]\,\,} \right]$$

$$- k^{{*^{2} }} \left[ { – 2\alpha \sigma \,m_{e} m_{i}^{ – 1} } \right. + \alpha \,m_{i} m_{e}^{ – 1} \left. {\left. { – k^{{*^{ – 2} }} \left( {\sigma \,m_{e} m_{i}^{ – 1} – m_{i} m_{e}^{ – 1} } \right) – 2\alpha^{2} k^{{*^{2} }} } \right]\,\,} \right]$$

(50)

$$A_{0} = \left[ { – P – \left( {m_{i} m_{e}^{ – 1} Q} \right)} \right. – \left( {2\sigma S} \right) – \left. {k^{{*^{2} }} \sigma^{2} – I} \right]$$

(51)

The different substituted terms in Eq. (51) are modified accordingly.

Classical (CND) non-planar regime

In the classical non-planar regime, the Bohm potential term is ignored. The dispersion relation is the same as Eq. (49), however, the coefficients \(A_{1}\) and \(A_{0}\) are modified. \(\alpha\) for the classical case is substituted from Eq. (36). The coefficients are modified as

$$A_{1} = – i\left\{ {ik^{*} + \,\left( {2R} \right)^{ – 1} \,} \right\}^{2} \eta^{*} \,\left[ {\,\left[ {\left\{ {ik^{*} – \,\left( {2R} \right)^{ – 1} \,} \right\}\left[ {\left( {\Omega_{ge}^{*} M_{e\varphi } – 2M_{\varphi } \omega_{z}^{*} } \right)\left[ {2\sigma m_{e} m_{i}^{ – 1} – m_{i} m_{e}^{ – 1} } \right.} \right.} \right.} \right.\left. {\left. { – 2\alpha \left\{ { – k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}} \right]\,\,} \right]$$

$$\, + \left\{ { – k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}\,\,\left[ {\Omega_{ge}^{*} M_{e\varphi } \left( {\Omega_{ge}^{*} M_{e\varphi } – 4M_{\varphi } \omega_{z}^{*} } \right)} \right.\left. {\left. { + 4\left( {M_{\varphi } \omega_{z}^{*} } \right)^{2} } \right]\,\,} \right] + \left\{ {ik^{*} – \,\left( {2R} \right)^{ – 1} \,} \right\}^{2} \left[ { – 2\alpha \sigma \,m_{e} m_{i}^{ – 1} } \right. + \alpha \,m_{i} m_{e}^{ – 1}$$

$$\left. {\left. { + \left\{ { – k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}^{ – 1} \left( {\sigma \,m_{e} m_{i}^{ – 1} – m_{i} m_{e}^{ – 1} } \right) + 2\alpha^{2} \left\{ { – k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}} \right]\,\,} \right]$$

(52)

$$A_{0} = \left[ { – P + \left[ {\left\{ {k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}\left\{ { – k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}^{ – 1} m_{i} m_{e}^{ – 1} Q} \right] + \left[ {2\left\{ {k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}^{2} \left\{ { – k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}^{ – 2} \sigma S} \right]} \right.$$

$$\left. { – \left[ {\left\{ {k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}^{3} \left\{ { – k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}^{ – 2} \sigma^{2} } \right] + \left[ {\left\{ {k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}\left\{ { – k^{{*^{2} }} + \left( {4R^{2} } \right)^{ – 1} } \right\}^{ – 1} I} \right]} \right]$$

(53)

The different substituted terms appearing in Eq. (53) are modified as per the approximations stated in “Classical non-planar regime” section.

Classical (CND) planar regime

In the classical (CND) planar regime, we have \(R \to \infty\). Just like the classical non-planar regime, Bohm potential is also ignored herein. The dispersion relation is the same as given by Eq. (49). The coefficients appearing in Eq. (49) are modified as per the considered regime. The cylindrical coordinates are conveniently mapped into planar coordinates. \(\alpha\) for the classical case is substituted from Eq. (36). The modified coefficients A1 and A0 are given as

$$A_{1} = ik^{{*^{2} }} \eta^{*} \,\left[ {\,\left[ {\left( {ik^{*} } \right)\left[ {\left( {\Omega_{ge}^{*} M_{ey} – 2M_{y} \omega_{z}^{*} } \right)\left[ {2\sigma m_{e} m_{i}^{ – 1} – m_{i} m_{e}^{ – 1} } \right.} \right.} \right.} \right.\left. {\left. { + 2\alpha k^{{*^{2} }} } \right]\,} \right] – k^{{*^{2} }} \,\,\left[ {\Omega_{ge}^{*} M_{ey} \left( {\Omega_{ge}^{*} M_{ey} – 4M_{y} \omega_{z}^{*} } \right)} \right.\left. {\left. { + 4\left( {M_{y} \omega_{z}^{*} } \right)^{2} } \right]\,\,} \right]$$

$$- k^{{*^{2} }} \left[ { – 2\alpha \sigma \,m_{e} m_{i}^{ – 1} } \right. + \alpha \,m_{i} m_{e}^{ – 1} \left. {\left. { – k^{{*^{ – 2} }} \left( {\sigma \,m_{e} m_{i}^{ – 1} – m_{i} m_{e}^{ – 1} } \right) – 2\alpha^{2} k^{{*^{2} }} } \right]\,\,} \right],$$

(54)

$$A_{0} = \left[ { – P – \left( {m_{i} m_{e}^{ – 1} Q} \right)} \right. – \left( {2\sigma S} \right) – \left. {k^{{*^{2} }} \sigma^{2} – I} \right]$$

(55)

The different terms appearing in Eq. (55) are modified as per our approximations (as in “Classical planar regime” section).

The above discussion in the subsections are summarily pointed out as

  • In the quantum non-planar regime, the dispersion relation has the contribution due to the geometric curvature effect, Lorentz force, Coriolis rotational force, kinematic viscosity, quantum parameter, Bohm potential, quantum pressure, temperature, and Jeans-to-plasma oscillation frequency ratio squared. The growth patterns for different parameters are depicted in Figs. 1, 2, 3, 4 and 5.

  • In the quantum planar regime, the reduced dispersion relation has the dependencies of all the above terms except the geometric curvature. The growth/damping trends of the same for different relevant parameters are given in Figs. 6, 7, 8, 9 and 10.

  • For the classical non-planar regime, the dispersion relation has the dependencies of all the terms as the quantum non-planar regime, except the Bohm potential term. The quantum pressure also gets replaced with the classical pressure. The growth/damp trends for the same are given in Figs. 11, 12, 13, 14 and 15.

  • Lastly, for the classical planar regime, the dispersion relation highlights the contribution of all the terms as the classical non-planar regime, except the geometric curvature terms. The growth/damp trends for the relevant parameters in this regime are graphically seen in Figs. 16, 17, 18, 19 and 20.

Figure 1

Profile of the normalized growth rate \(\left( {\Omega_{i} } \right)\) with variation in the normalized wavenumber \(\left( {k^{*} } \right)\). The different lines link to different values of the equilibrium number density \(\left( {n_{0} } \right)\) in non-planar (cylindrical) geometry in the quantum regime (\(\hbar \ne 0\)).

Figure 2
figure 2

Same as Fig. 1, but for different values of the normalized kinematic viscosity \(\left( {\eta^{*} } \right)\).

Figure 3
figure 3

Same as Fig. 1, but for different values of the normalized Coriolis rotational force \(\left( {C_{F}^{*} } \right)\).

Figure 4
figure 4

Same as Fig. 1, but for different values of the normalized thermal temperature \(\left( {T^{*} } \right)\). The second subplot is the magnified version depicting the peaks (kinks) clearly.

Figure 5
figure 5

Same as Fig. 1, but for different values of magnetic field \(\left( B \right)\). The two subsequent subplots depict the magnified versions clearly highlighting the peaks (kinks).

Figure 6
figure 6

Profile of the normalized growth rate \(\left( {\Omega_{i} } \right)\) with variation in the normalized wavenumber \(\left( {k^{*} } \right)\). The different lines link to different values of the equilibrium number density \(\left( {n_{0} } \right)\) in planar (non-cylindrical) geometry in the quantum regime. The second subplot is the enlarged version highlighting the trends for \(n_{0} = 10^{29}\) m-3 and \(n_{0} = 10^{31}\) m-3.

Figure 7
figure 7

Same as Fig. 6, but for different values of the normalized kinematic viscosity \(\left( {\eta^{*} } \right)\). The second subplot is the enlarged version clearly highlighting the trends for \(\eta = 10^{ – 2}\) kg m-1 s-1 and \(\eta = 10^{ – 1}\) kg m-1 s-1.

Figure 8
figure 8

Same as Fig. 6, but for different values of the normalized Coriolis rotational force \(\left( {C_{F}^{*} } \right)\).

Figure 9
figure 9

Same as Fig. 6, but for different values of the normalized thermal temperature \(\left( {T^{*} } \right)\). The second subplot is the magnified version depicting the peaks clearly.

Figure 10
figure 10

Same as Fig. 6, but for different values of the magnetic field \(\left( B \right)\).

Figure 11
figure 11

Profile of the normalized growth rate \(\left( {\Omega_{i} } \right)\) with variation in the normalized wavenumber \(\left( {k^{*} } \right)\). The different lines link to different values of the equilibrium number density \(\left( {n_{0} } \right)\) in non-planar (cylindrical) geometry in the classical regime (\(\hbar \to 0\)).

Figure 12
figure 12

Same as Fig. 11, but for different values of the normalized kinematic viscosity \(\left( {\eta^{*} } \right)\).

Figure 13
figure 13

Same as Fig. 11, but for different values of the normalized Coriolis rotational force \(\left( {C_{F}^{*} } \right)\).

Figure 14
figure 14

Same as Fig. 11, but for different values of the normalized thermal temperature \(\left( {T^{*} } \right)\). The second subplot is the magnified version depicting the peaks (kinks) clearly.

Figure 15
figure 15

Same as Fig. 11, but for different values of the magnetic field \(\left( B \right)\). The second subplot is the magnified version depicting the peaks (kinks) clearly.

Figure 16
figure 16

Profile of the normalized growth rate \(\left( {\Omega_{i} } \right)\) with variation in the normalized wavenumber \(\left( {k^{*} } \right)\). The different lines link to different values of the equilibrium number density \(\left( {n_{0} } \right)\) in planar (non-cylindrical) geometry in the classical regime (\(\hbar \to 0\)). The second subplot is its enlarged version clearly showing the trends for \(n_{0} = 10^{21}\) m-3 and \(n_{0} = 10^{23}\) m-3.

Figure 17
figure 17

Same as Fig. 16, but for different values of the normalized kinematic viscosity \(\left( {\eta^{*} } \right)\).

Figure 18
figure 18

Same as Fig. 16, but for different values of the normalized Coriolis rotational force \(\left( {C_{F}^{*} } \right)\).

Figure 19
figure 19

Same as Fig. 16, but for different values of the normalized thermal temperature \(\left( {T^{*} } \right)\). The second subplot is the magnified version depicting the peaks (kinks) clearly.

Figure 20
figure 20

Same as Fig. 16, but for different values of the magnetic field \(\left( B \right)\). The second subplot is the magnified version depicting the peaks (kinks) clearly.

Thus, it is clearly seen that, in all the four considered distinct regimes, the modified dispersion relation has sensitive dependencies on the multiparametric model coefficients influencing the stability dynamics of the considered plasma system.

Source link

Related articles

BlockDAG’s CEO and Team Announced: Expected to Surpass Hedera and Polygon with a  Projection

BlockDAG’s CEO and Team Announced: Expected to Surpass Hedera and Polygon with a $1 Projection

30 July 2024
VeChain (VET) And Hedera (HBAR) Triple Red Charts. Rollblock (RBLK) Seems The Summer Sure Money Bet – Times Tabloid

VeChain (VET) And Hedera (HBAR) Triple Red Charts. Rollblock (RBLK) Seems The Summer Sure Money Bet – Times Tabloid

28 July 2024
[crypto-donation-box]
Tags: AcousticastrostructureCylinderformationLeadingselfgravitatingStability
Share76Tweet47
Ledger Nano X - The secure hardware wallet
Previous Post

CS:GO community outraged over G2’s latest gambling promotion

Next Post

Binance Users Deposited Over $4B to Farm SUI Tokens Ahead of Mainnet Launch

Related Posts

BlockDAG’s CEO and Team Announced: Expected to Surpass Hedera and Polygon with a  Projection

BlockDAG’s CEO and Team Announced: Expected to Surpass Hedera and Polygon with a $1 Projection

30 July 2024
0

In the latest Hedera (HBAR) update, the integration of Blade, a self-custody Web3 wallet, demonstrates Hedera’s commitment to simplifying digital...

VeChain (VET) And Hedera (HBAR) Triple Red Charts. Rollblock (RBLK) Seems The Summer Sure Money Bet – Times Tabloid

VeChain (VET) And Hedera (HBAR) Triple Red Charts. Rollblock (RBLK) Seems The Summer Sure Money Bet – Times Tabloid

28 July 2024
0

VeChain and Hedera have been in freefall since the start of the March correction. Despite both being fundamentally solid projects...

400,000 New Hedera Accounts in One Week: Blade Wallet in

400,000 New Hedera Accounts in One Week: Blade Wallet in

25 July 2024
0

Hedera Network is growing with a massive 400,000 new accounts bagged in one week. The network is looking to serve...

Why Whales Are Betting Big on WW3Shiba and Shifting from Dogecoin!

Why Whales Are Betting Big on WW3Shiba and Shifting from Dogecoin!

24 July 2024
0

Hedera (HBAR) is capitalizing on its innovative technology to challenge Bitcoin's (BTC) legacy. Bitcoin continues to shrug off challenges from...

This New Crypto Presale Has Gone Viral In July As HBAR and FIL Holders Are Lured By 100x Potential

This New Crypto Presale Has Gone Viral In July As HBAR and FIL Holders Are Lured By 100x Potential

22 July 2024
0

As Bitcoin climbs to its all-time high, investors holding altcoins like Hedera (HBAR) and Filecoin (FIL) are considering new tokens...

Load More
Next Post
Binance Users Deposited Over B to Farm SUI Tokens Ahead of Mainnet Launch

Binance Users Deposited Over $4B to Farm SUI Tokens Ahead of Mainnet Launch

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Plugin Install : Widget Tab Post needs JNews - View Counter to be installed
  • Trending
  • Comments
  • Latest
Retail Skips SHIB and DOGE for a Sub- DeFi Project Targeting 900% Before Year End

Retail Skips SHIB and DOGE for a Sub-$1 DeFi Project Targeting 900% Before Year End

12 September 2025
SOL Breaks 0, Touches 0 for First Time Since January – Is Solana Season Finally Here? – Cryptonews

SOL Breaks $230, Touches $240 for First Time Since January – Is Solana Season Finally Here? – Cryptonews

12 September 2025
What It Means for BTC Price Action

What It Means for BTC Price Action

12 September 2025
Why Investors Should Pay Attention to These 3 Crypto Narratives

Why Investors Should Pay Attention to These 3 Crypto Narratives

12 September 2025

About Us

We publish a comprehensive news feed covering all news relevant to the crypto user, covering main industry news, politics and regulation as well as consumer-level “news you can use” (practical stuff), including handy DIY tips, links to useful tools, unbiased reviews and opinions revolving around cryptocurrency. Simple logic and real-world examples are preferred before technical jargon and personal rants.

Categories

  • Altcoin
  • ApeCoin
  • Bitcoin
  • Blockchain
  • BNB
  • Cardano
  • Cryptocurrency
  • DOGE
  • DOT
  • Ethereum
  • HBAR
  • Litecoin
  • Market
  • Meta News
  • Mining
  • NFT
  • QNT
  • Regulation
  • SHIBA
  • Solano
  • Tether
  • Uncategorized
  • XDC
  • XLM
  • XRP

What’s New Here!

  • Retail Skips SHIB and DOGE for a Sub-$1 DeFi Project Targeting 900% Before Year End
  • SOL Breaks $230, Touches $240 for First Time Since January – Is Solana Season Finally Here? – Cryptonews
  • What It Means for BTC Price Action
  • Why Investors Should Pay Attention to These 3 Crypto Narratives
  • [LIVE] Crypto News Today, September 12 – Bitcoin Crosses $115K, SOL Price Surges To $238 And BNB Hits A New ATH: Best Crypto To Buy Now? – 99Bitcoins

Subscribe Now

Our Partner

Round Main Logo
  • About Us
  • Privacy Policy
  • Contact Us

© 2022-2025 coin24h.com

No Result
View All Result
  • Home
  • Cryptocurrency
    • Bitcoin
    • Ethereum
    • XRP
    • Litecoin
    • Altcoin
    • Cardano
    • Tether
    • DOGE
    • Solano
    • XLM
    • DOT
    • XDC
    • SHIBA
    • BNB
    • Ape
    • HBAR
    • QNT
  • Blockchain
  • Regulation
  • Market
  • Live
    • Prices
    • ICO
  • Meta
    • NFT
  • Technical Analysis
    • XRP
    • BTC
    • XLM
    • ADA
    • TETHER
    • ETC
    • ETH
    • DOGE
    • LTC
  • Exchange
  • Mining

© 2020 coin24h.com

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In
  • bitcoinBitcoin (BTC) $ 115,089.00
  • ethereumEthereum (ETH) $ 4,523.95
  • xrpXRP (XRP) $ 3.04
  • tetherTether (USDT) $ 1.00
  • solanaSolana (SOL) $ 239.78
  • bnbBNB (BNB) $ 908.48
  • usd-coinUSDC (USDC) $ 0.999761
  • dogecoinDogecoin (DOGE) $ 0.262540
  • staked-etherLido Staked Ether (STETH) $ 4,515.01
  • tronTRON (TRX) $ 0.348283
  • cardanoCardano (ADA) $ 0.889557
  • wrapped-stethWrapped stETH (WSTETH) $ 5,477.59
  • chainlinkChainlink (LINK) $ 24.39
  • wrapped-beacon-ethWrapped Beacon ETH (WBETH) $ 4,877.16
  • hyperliquidHyperliquid (HYPE) $ 56.15
  • wrapped-bitcoinWrapped Bitcoin (WBTC) $ 114,937.00
  • ethena-usdeEthena USDe (USDE) $ 1.00
  • suiSui (SUI) $ 3.63
  • figure-helocFigure Heloc (FIGR_HELOC) $ 1.04
  • stellarStellar (XLM) $ 0.393100
  • wrapped-eethWrapped eETH (WEETH) $ 4,857.76
  • avalanche-2Avalanche (AVAX) $ 28.44
  • bitcoin-cashBitcoin Cash (BCH) $ 590.38
  • wethWETH (WETH) $ 4,520.52
  • hedera-hashgraphHedera (HBAR) $ 0.239745
  • litecoinLitecoin (LTC) $ 115.78
  • leo-tokenLEO Token (LEO) $ 9.55
  • crypto-com-chainCronos (CRO) $ 0.253870
  • the-open-networkToncoin (TON) $ 3.19
  • usdsUSDS (USDS) $ 0.999457
  • shiba-inuShiba Inu (SHIB) $ 0.000013
  • binance-bridged-usdt-bnb-smart-chainBinance Bridged USDT (BNB Smart Chain) (BSC-USD) $ 1.00
  • coinbase-wrapped-btcCoinbase Wrapped BTC (CBBTC) $ 114,954.00
  • polkadotPolkadot (DOT) $ 4.21
  • whitebitWhiteBIT Coin (WBT) $ 43.72
  • uniswapUniswap (UNI) $ 10.00
  • ethena-staked-usdeEthena Staked USDe (SUSDE) $ 1.20
  • world-liberty-financialWorld Liberty Financial (WLFI) $ 0.199948
  • mantleMantle (MNT) $ 1.62
  • ethenaEthena (ENA) $ 0.751674
  • moneroMonero (XMR) $ 277.46
  • aaveAave (AAVE) $ 313.50
  • bitget-tokenBitget Token (BGB) $ 4.90
  • daiDai (DAI) $ 0.999968
  • pepePepe (PEPE) $ 0.000011
  • okbOKB (OKB) $ 195.65
  • memecoreMemeCore (M) $ 2.20
  • jito-staked-solJito Staked SOL (JITOSOL) $ 294.84
  • ondo-financeOndo (ONDO) $ 1.08
  • nearNEAR Protocol (NEAR) $ 2.72