You, J. Q. & Nori, F. Atomic physics and quantum optics using superconducting circuits. Nature 474, 589–597 (2011).
Google Scholar
Astafiev, O. et al. Resonance fluorescence of a single artificial atom. Science 327, 840–843 (2010).
Google Scholar
Wilson, C. et al. Coherence times of dressed states of a superconducting qubit under extreme driving. Phys. Rev. Lett. 98, 257003 (2007).
Google Scholar
Astafiev, O. V. et al. Ultimate on-chip quantum amplifier. Phys. Rev. Lett. 104, 183603 (2010).
Google Scholar
Astafiev, O. et al. Single artificial-atom lasing. Nature 449, 588–590 (2007).
Google Scholar
Dmitriev, A. Y., Shaikhaidarov, R., Antonov, V. N., Hönigl-Decrinis, T. & Astafiev, O. V. Quantum wave mixing and visualisation of coherent and superposed photonic states in a waveguide. Nat. Commun. 8, 1352 (2017).
Google Scholar
Hönigl-Decrinis, T. et al. Mixing of coherent waves in a single three-level artificial atom. Phys. Rev. A 98, 041801 (2018).
Google Scholar
Sillanpää, M. A. et al. Autler–Townes effect in a superconducting three-level system. Phys. Rev. Lett. 103, 193601 (2009).
Google Scholar
Hoi, I.-C. et al. Giant cross Kerr effect for propagating microwaves induced by an artificial atom. Phys. Rev. Lett. 111, 053601 (2013).
Google Scholar
Peng, Z. H. et al. Vacuum-induced Autler–Townes splitting in a superconducting artificial atom. Phys. Rev. A 97, 063809 (2018).
Google Scholar
Abdumalikov, A. A. et al. Electromagnetically induced transparency on a single artificial atom. Phys. Rev. Lett. 104, 193601 (2010).
Google Scholar
Liu, Q.-C. et al. Method for identifying electromagnetically induced transparency in a tunable circuit quantum electrodynamics system. Phys. Rev. A 93, 053838 (2016).
Google Scholar
Gasparinetti, S. et al. Two-photon resonance fluorescence of a ladder-type atomic system. Phys. Rev. A 100, 033802 (2019).
Google Scholar
Toyli, D. M. et al. Resonance fluorescence from an artificial atom in squeezed vacuum. Phys. Rev. X 6, 031004 (2016).
Rolland, C. et al. Antibunched photons emitted by a dc-biased Josephson junction. Phys. Rev. Lett. 122, 186804 (2019).
Google Scholar
Menard, G. C. et al. Emission of photon multiplets by a dc-biased superconducting circuit. Phys. Rev. X 12, 021006 (2022).
Kim, E. et al. Quantum electrodynamics in a topological waveguide. Phys. Rev. X 11, 011015 (2021).
Shevchenko, S. N., Ashhab, S. & Nori, F. Landau-Zener-Stückelberg interferometry. Phys. Rep. 492, 1–30 (2010).
Google Scholar
Nakamura, Y., Pashkin, Y. A. & Tsai, J. S. Rabi oscillations in a Josephson-junction charge two-level system. Phys. Rev. Lett. 87, 246601 (2001).
Google Scholar
Sillanpää, M., Lehtinen, T., Paila, A., Makhlin, Y. & Hakonen, P. Continuous-time monitoring of Landau–Zener interference in a cooper-pair box. Phys. Rev. Lett. 96, 187002 (2006).
Google Scholar
LaHaye, M. D., Suh, J., Echternach, P. M., Schwab, K. C. & Roukes, M. L. Nanomechanical measurements of a superconducting qubit. Nature 459, 960 (2009).
Google Scholar
Koshino, K. et al. Observation of the three-state dressed states in circuit quantum electrodynamics. Phys. Rev. Lett. 110, 263601 (2013).
Google Scholar
Oliver, W. D. et al. Mach–Zehnder interferometry in a strongly driven superconducting qubit. Science 310, 1653 (2005).
Google Scholar
Sun, G. et al. Population inversion induced by Landau–Zener transition in a strongly driven rf superconducting quantum interference device. Appl. Phys. Lett. 94, 102502 (2009).
Google Scholar
Petta, J. R., Lu, H. & Gossard, A. C. A coherent beam splitter for electronic spin states. Science 327, 669–672 (2010).
Google Scholar
Stehlik, J. et al. Landau–Zener–Stückelberg interferometry of a single electron charge qubit. Phys. Rev. B 86, 121303 (2012).
Google Scholar
Nakajima, T. et al. Coherent transfer of electron spin correlations assisted by dephasing noise. Nat. Commun. 9, 2133 (2018).
Google Scholar
Jirovec, D. et al. Dynamics of hole singlet-triplet qubits with large \(g\)-factor differences. Phys. Rev. Lett. 128, 126803 (2022).
Google Scholar
Nalbach, P., Knörzer, J. & Ludwig, S. Nonequilibrium Landau–Zener–Stueckelberg spectroscopy in a double quantum dot. Phys. Rev. B 87, 165425 (2013).
Google Scholar
Cao, G. et al. Ultrafast universal quantum control of a quantum-dot charge qubit using Landau–Zener–Stückelberg interference. Nat. Commun. 4, 1401 (2013).
Google Scholar
Ivakhnenko, O., Shevchenko, S. & Nori, F. Quantum control via Landau–Zener–Stückelberg–Majorana transitions. Phys. Rep. 995, 1–89 (2023).
Google Scholar
Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004).
Google Scholar
Gambetta, J. et al. Qubit-photon interactions in a cavity: Measurement-induced dephasing and number splitting. Phys. Rev. A 74, 042318 (2006).
Google Scholar
Paik, H. et al. Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit qed architecture. Phys. Rev. Lett. 107, 240501 (2011).
Google Scholar
Fedorov, A. et al. Strong coupling of a quantum oscillator to a flux qubit at its symmetry point. Phys. Rev. Lett. 105, 060503 (2010).
Google Scholar
Stern, M. et al. Flux qubits with long coherence times for hybrid quantum circuits. Phys. Rev. Lett. 113, 123601 (2014).
Google Scholar
Peterer, M. J. et al. Coherence and decay of higher energy levels of a superconducting Transmon qubit. Phys. Rev. Lett. 114, 010501 (2015).
Google Scholar
Blais, A., Girvin, S. M. & Oliver, W. D. Quantum information processing and quantum optics with circuit quantum electrodynamics. Nat. Phys. 16, 247–256 (2020).
Google Scholar
Wallraff, A. et al. Approaching unit visibility for control of a superconducting qubit with dispersive readout. Phys. Rev. Lett. 95, 060501 (2005).
Google Scholar
Manucharyan, V. E., Koch, J., Glazman, L. I. & Devoret, M. H. Fluxonium: single cooper-pair circuit free of charge offsets. Science 326, 113–116 (2009).
Google Scholar
Houck, A. A. et al. Controlling the spontaneous emission of a superconducting Transmon qubit. Phys. Rev. Lett. 101, 080502 (2008).
Google Scholar
Mallet, F. et al. Single-shot qubit readout in circuit quantum electrodynamics. Nat. Phys. 5, 791–795 (2009).
Google Scholar
Vijay, R., Slichter, D. H. & Siddiqi, I. Observation of quantum jumps in a superconducting artificial atom. Phys. Rev. Lett. 106, 110502 (2011).
Google Scholar
Braumüller, J. et al. Multiphoton dressing of an anharmonic superconducting many-level quantum circuit. Phys. Rev. B 91, 054523 (2015).
Google Scholar
Bishop, L. S. et al. Nonlinear response of the vacuum rabi resonance. Nat. Phys. 5, 105–109 (2009).
Google Scholar
Forn-Díaz, P. et al. Ultrastrong coupling of a single artificial atom to an electromagnetic continuum in the nonperturbative regime. Nat. Phys. 13, 39–43 (2017).
Google Scholar
Yoshihara, F. et al. Superconducting qubit-oscillator circuit beyond the ultrastrong-coupling regime. Nat. Phys. 13, 44–47 (2017).
Google Scholar
Baust, A. et al. Ultrastrong coupling in two-resonator circuit qed. Phys. Rev. B 93, 214501 (2016).
Google Scholar
Pietikäinen, I. et al. Observation of the Bloch–Siegert shift in a driven quantum-to-classical transition. Phys. Rev. B 96, 020501 (2017).
Google Scholar
Oelsner, G. et al. Dressed-state amplification by a single superconducting qubit. Phys.l Rev. Lett. 110, 053602 (2013).
Google Scholar
Majer, J. et al. Coupling superconducting qubits via a cavity bus. Nature 449, 443–447 (2007).
Google Scholar
Leek, P. J. et al. Using sideband transitions for two-qubit operations in superconducting circuits. Phys. Rev. B 79, 180511 (2009).
Google Scholar
DiCarlo, L. et al. Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature 460, 240–244 (2009).
Google Scholar
Poletto, S. et al. Entanglement of two superconducting qubits in a waveguide cavity via monochromatic two-photon excitation. Phys. Rev. Lett. 109, 240505 (2012).
Google Scholar
Ofek, N. et al. Extending the lifetime of a quantum bit with error correction in superconducting circuits. Nature 536, 441–445 (2016).
Google Scholar
Leek, P. J. et al. Cavity quantum electrodynamics with separate photon storage and qubit readout modes. Phys. Rev. Lett. 104, 100504 (2010).
Google Scholar
Vrajitoarea, A., Huang, Z., Groszkowski, P., Koch, J. & Houck, A. A. Quantum control of an oscillator using a stimulated Josephson nonlinearity. Nat. Phys. 16, 211–217 (2020).
Google Scholar
Singh, S. Field statistics in some generalized Jaynes–cummings models. Phys. Rev. A 25, 3206–3216 (1982).
Google Scholar
Puri, R. R. & Agarwal, G. S. Collapse and revival phenomena in the Jaynes–Cummings model with cavity damping. Phys. Rev. A 33, 3610–3613 (1986).
Google Scholar
Agarwal, G. S. & Puri, R. R. Collapse and revival phenomenon in the evolution of a resonant field in a Kerr-like medium. Phys. Rev. A 39, 2969–2977 (1989).
Google Scholar
Dutra, S. M., Knight, P. L. & Moya-Cessa, H. Large-scale fluctuations in the driven Jaynes–Cummings model. Phys. Rev. A 49, 1993–1998 (1994).
Google Scholar
Tavis, M. & Cummings, F. W. Exact solution for an \(n\)-molecule-radiation-field Hamiltonian. Phys. Rev. 170, 379–384 (1968).
Google Scholar
Greentree, A. D., Tahan, C., Cole, J. H. & Hollenberg, L. C. L. Quantum phase transitions of light. Nat. Phys. 2, 66 (2006).
Google Scholar
Hartmann, M. J., Brandão, F. G. S. L. & Plenio, M. B. Strongly interacting polaritons in coupled arrays of cavities. Nat. Phys. 2, 66 (2006).
Google Scholar
Koch, J. et al. Charge-insensitive qubit design derived from the cooper pair box. Phys. Rev. A 76, 042319 (2007).
Braak, D. Integrability of the rabi model. Phys. Rev. Lett. 107, 100401 (2011).
Google Scholar
Chien, W.-C. et al. Optical amplification assisted by two-photon processes in a 3-level Transmon artificial atom. Opt. Express 27, 36088–36099 (2019).
Google Scholar
Blais, A., Huang, R.-S., Wallraff, A., Girvin, S. M. & Schoelkopf, R. J. Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation. Phys. Rev. A 69, 062320 (2004).
Google Scholar
Ho, I. L. & Kuo, W. Energy conversion from environmental fluctuations to coherent fields by cooper-pair box quantum meta-materials. J. Phys. Condens. Matter 31, 055702 (2018).
Google Scholar