• Home
  • Cryptocurrency
    • Bitcoin
    • Ethereum
    • XRP
    • Litecoin
    • Altcoin
    • Cardano
    • Tether
    • DOGE
    • Solano
    • XLM
    • DOT
    • XDC
    • SHIBA
    • BNB
    • Ape
    • HBAR
    • QNT
  • Blockchain
  • Regulation
  • Market
  • Live
    • Prices
    • ICO
  • Meta
    • NFT
  • Technical Analysis
    • XRP
    • BTC
    • XLM
    • ADA
    • TETHER
    • ETC
    • ETH
    • DOGE
    • LTC
  • Exchange
  • Mining
Thursday, September 11, 2025
  • Login
  • Register
Coin24h.com
  • Home
  • Cryptocurrency
    • Bitcoin
    • Ethereum
    • XRP
    • Litecoin
    • Altcoin
    • Cardano
    • Tether
    • DOGE
    • Solano
    • XLM
    • DOT
    • XDC
    • SHIBA
    • BNB
    • Ape
    • HBAR
    • QNT
  • Blockchain
  • Regulation
  • Market
  • Live
    • Prices
    • ICO
  • Meta
    • NFT
  • Technical Analysis
    • XRP
    • BTC
    • XLM
    • ADA
    • TETHER
    • ETC
    • ETH
    • DOGE
    • LTC
  • Exchange
  • Mining
No Result
View All Result
  • Home
  • Cryptocurrency
    • Bitcoin
    • Ethereum
    • XRP
    • Litecoin
    • Altcoin
    • Cardano
    • Tether
    • DOGE
    • Solano
    • XLM
    • DOT
    • XDC
    • SHIBA
    • BNB
    • Ape
    • HBAR
    • QNT
  • Blockchain
  • Regulation
  • Market
  • Live
    • Prices
    • ICO
  • Meta
    • NFT
  • Technical Analysis
    • XRP
    • BTC
    • XLM
    • ADA
    • TETHER
    • ETC
    • ETH
    • DOGE
    • LTC
  • Exchange
  • Mining
No Result
View All Result
Coin24h.com
No Result
View All Result
Ledger Nano X - The secure hardware wallet
ADVERTISEMENT

Enhancing robot evolution through Lamarckian principles

30 November 2023
in DOT
Reading Time: 12 mins read
A A
0
Enhancing robot evolution through Lamarckian principles
189
SHARES
1.5k
VIEWS
Share on FacebookShare on Twitter
cryptotrader
ADVERTISEMENT

Related articles

Polkadot Price Likely to Crash xx% Despite Recent Protocol Upgrade

Polkadot Price Likely to Crash xx% Despite Recent Protocol Upgrade

30 July 2024
Here’s Why UNI and Polkadot (DOT) Holders Are Flocking To Rollblock

Here’s Why UNI and Polkadot (DOT) Holders Are Flocking To Rollblock

28 July 2024
  • Nolfi, S., Floreano, D. & Floreano, D. D. Evolutionary robotics: The biology, intelligence, and technology of self-organizing machines (MIT press, 2000).

  • Doncieux, S., Bredeche, N., Mouret, J.-B. & Eiben, A. E. Evolutionary robotics: What, why, and where to. Front. Robot. AI 2, 4 (2015).

    Article 
    ADS 

    Google Scholar 

  • Floreano, D. & Mondada, F. Evolutionary neurocontrollers for autonomous mobile robots. Neural Netw. 11, 1461–1478 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Capi, G., Pojani, G. & Kaneko, S.-I. Evolution of task switching behaviors in real mobile robots. In 2008 3rd International Conference on Innovative Computing Information and Control, 495–495, https://doi.org/10.1109/ICICIC.2008.261 (2008).

  • Sims, K. Evolving virtual creatures. In Proceedings of the 21st annual conference on computer graphics and interactive techniques, 15–22 (ACM, 1994).

  • Lehman, J. & Stanley, K. O. Evolving a diversity of virtual creatures through novelty search and local competition. In Proceedings of the 13th annual conference on Genetic and evolutionary computation, 211–218 (2011).

  • Auerbach, J. E. & Bongard, J. C. On the relationship between environmental and morphological complexity in evolved robots. In Proceedings of the 14th annual conference on Genetic and evolutionary computation, 521–528 (ACM, 2012).

  • Weel, B., Crosato, E., Heinerman, J., Haasdijk, E. & Eiben, A. E. A robotic ecosystem with evolvable minds and bodies. In 2014 IEEE International Conference on Evolvable Systems, 165–172 (IEEE Press, Piscataway, 2014).

  • Lipson, H., SunSpiral, V., Bongard, J. C. & Cheney, N. On the difficulty of co-optimizing morphology and control in evolved virtual creatures. Artif. Life. 226–233 (2016).

  • Cheney, N., Bongard, J., SunSpiral, V. & Lipson, H. Scalable co-optimization of morphology and control in embodied machines. J. R. Soc. Interf. 15 (2018).

  • Miras, K. & Eiben, A.E. Effects of environmental conditions on evolved robot morphologies and behavior. In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’19, 125-132, (Association for Computing Machinery, New York, 2019). https://doi.org/10.1145/3321707.3321811.

  • Hockings, N. & Howard, D. New biological morphogenetic methods for evolutionary design of robot bodies. Front. Bioeng. Biotechnol.https://doi.org/10.3389/fbioe.2020.00621 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stensby, E. H., Ellefsen, K. O. & Glette, K. Co-optimising robot morphology and controller in a simulated open-ended environment. In Applications of Evolutionary Computation: 24th International Conference, EvoApplications 2021, Held as Part of EvoStar 2021, Virtual Event, 2021, Proceedings, 34–49. (Springer-Verlag, Berlin, Heidelberg, 2021). https://doi.org/10.1007/978-3-030-72699-7_3.

  • Medvet, E., Bartoli, A., Pigozzi, F. & Rochelli, M. Biodiversity in evolved voxel-based soft robots. In Proceedings of the 2021 genetic and evolutionary computation conference 129–137 (2021).

  • Nygaard, T. F., Martin, C. P., Torresen, J., Glette, K. & Howard, D. Real-world embodied AI through a morphologically adaptive quadruped robot. Nat. Mach. Intell. 1, 12–19 (2021).

    Google Scholar 

  • Nolfi, S. & Floreano, D. Learning and evolution. Auton. Robot. 7, 89–113 (1999).

    Article 

    Google Scholar 

  • Floreano, D. & Mondada, F. Evolution of plastic neurocontrollers for situated agents. In Proceedings of the fourth international conference on simulation of adaptive behavior (SAB), from animals to animats (ETH Zürich, 1996).

  • Harvey, I., Husbands, P., Cliff, D., Thompson, A. & Jakobi, N. Evolutionary robotics: the Sussex approach. Robot. Auton. Syst. 20, 205–224 (1997).

    Article 

    Google Scholar 

  • Schembri, M., Mirolli, M. & Baldassarre, G. Evolution and learning in an intrinsically motivated reinforcement learning robot. In Proceedings of the 9th European conference on advances in artificial life, vol. 4648, 294–303 (2007).

  • Sproewitz, A., Moeckel, R., Maye, J. & Ijspeert, A. J. Learning to move in modular robots using central pattern generators and online optimization. Int. J. Robot. Res. 27, 423–443 (2008).

    Article 

    Google Scholar 

  • Bellas, F., Duro, R. J., Faiña, A. & Souto, D. Multilevel darwinist brain (MDB): Artificial evolution in a cognitive architecture for real robots. IEEE Trans. Auton. Ment. Dev. 2, 340–354 (2010).

    Article 

    Google Scholar 

  • Khazanov, M., Jocque, J. & Rieffel, J. Evolution of locomotion on a physical tensegrity robot. In ALIFE 14: the fourteenth international conference on the synthesis and simulation of living systems, 232–238 (MIT Press, 2014).

  • Ruud, E. L., Samuelsen, E. & Glette, K. Memetic robot control evolution and adaption to reality. In 016 IEEE symposium series on computational intelligence, SSCI 2016 (2017).

  • Schaff, C., Yunis, D., Chakrabarti, A. & Walter, M. R. Jointly learning to construct and control agents using deep reinforcement learning. In 2019 international conference on robotics and automation (ICRA), 9798–9805 (IEEE, 2019).

  • Hwangbo, J. et al. Learning agile and dynamic motor skills for legged robots. Sci. Rob. 4, eaau5872 (2019).

  • Le Goff, L. K. et al. Sample and time efficient policy learning with CMA-ES and Bayesian Optimisation. In The 2020 conference on artificial life, (2020).

  • Eiben, A. E. et al. The triangle of life: Evolving robots in real-time and real-space. In Artificial life conference proceedings 13, 1056–1063 (MIT Press, 2013).

  • Jelisavcic, M. et al. Real-world evolution of robot morphologies: A proof of concept. Artif. Life 23, 206–235 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Kriegman, S., Cheney, N. & Bongard, J. How morphological development can guide evolution. Sci. Rep. 8, 1–10 (2018).

    Google Scholar 

  • Aguilar, L., Bennati, S. & Helbing, D. How learning can change the course of evolution. PLoS ONE 14, e0219502 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Howard, D. et al. Evolving embodied intelligence from materials to machines. Nat. Mach. Intell. 1, 12–19 (2019).

    Article 

    Google Scholar 

  • Miras, K., De Carlo, M., Akhatou, S. & Eiben, A. E. Evolving-controllers versus learning-controllers for morphologically evolvable robots. In Applications of evolutionary computation, 86–99 (2020).

  • Gupta, A., Savarese, S., Ganguli, S. & Fei-Fei, L. Embodied Intelligence via Learning and Evolution. Nat. Commun. 12 (2021).

  • Goff, L. K. L. & Hart, E. On the challenges of jointly optimising robot morphology and control using a hierarchical optimisation scheme. In Proceedings of the genetic and evolutionary computation conference companion, 1498–1502 (2021).

  • Hart, E. & Le Goff, L. K. Artificial evolution of robot bodies and control: On the interaction between evolution, learning and culture. Philos. Trans. R. Soc. B 377, 20210117 (2022).

    Article 

    Google Scholar 

  • Luo, J., Stuurman, A., Tomczak, J. M., Ellers, J. & Eiben, A. E. The effects of learning in morphologically evolving robot systems. Front. Robot. AI 5 (2022).

  • Long, J. Darwin’s devices: What evolving robots can teach us about the history of life and the future of technology (Basic Books (AZ), 2012).

  • Montanier, J.-M. & Bredeche, N. Surviving the tragedy of commons: Emergence of altruism in a population of evolving autonomous agents. In European conference on artificial life (2011).

  • Waibel, M., Floreano, D. & Keller, L. A quantitative test of Hamilton’s rule for the evolution of altruism. PLoS Biol. 9, e1000615 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Solomon, M., Soule, T. & Heckendorn, R. B. A comparison of a communication strategies in cooperative learning. In Proceedings of the 14th annual conference on Genetic and evolutionary computation, 153–160 (2012).

  • Floreano, D., Mitri, S., Magnenat, S. & Keller, L. Evolutionary conditions for the emergence of communication in robots. Curr. Biol. 17, 514–519 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mitri, S., Floreano, D. & Keller, L. The evolution of information suppression in communicating robots with conflicting interests. Proc. Natl. Acad. Sci. 106, 15786–15790 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wischmann, S., Floreano, D. & Keller, L. Historical contingency affects signaling strategies and competitive abilities in evolving populations of simulated robots. Proc. Natl. Acad. Sci. 109, 864–868 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bongard, J. Morphological change in machines accelerates the evolution of robust behavior. Proc. Natl. Acad. Sci. 108, 1234–1239 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Auerbach, J. E. & Bongard, J. C. Environmental influence on the evolution of morphological complexity in machines. PLoS Comput. Biol. 10, e1003399 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Olson, R. S., Hintze, A., Dyer, F. C., Knoester, D. B. & Adami, C. Predator confusion is sufficient to evolve swarming behaviour. J. R. Soc. Interface 10, 20130305 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Datteri, E. Interactive biorobotics. Synthese 198, 7577–7595 (2021).

    Article 
    MATH 

    Google Scholar 

  • Webb, B. Can robots make good models of biological behaviour?. Behav. Brain Sci. 24, 1033–1050 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Webb, B. Validating biorobotic models. J. Neural Eng. 3, R25 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Maynard Smith, J. Byte-sized evolution. Nature 355, 772–773 (1992).

    Article 
    ADS 

    Google Scholar 

  • Zirkle, C. The early history of the idea of the inheritance of acquired characters and of pangenesis. Trans. Am. Philos. Soc. 35, 91–151 (1946).

    Article 

    Google Scholar 

  • Burkhardt, R. W. Lamarck, evolution, and the inheritance of acquired characters. In Genetics, 793–805, https://doi.org/10.1534/genetics.113.151852 (2013).

  • Bossdorf, O., Richards, C. L. & Pigliucci, M. Epigenetics for ecologists. Ecol. Lett. 11, 106–115 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Goff, L. K. L. et al. Morpho-evolution with learning using a controller archive as an inheritance mechanism. arXiv:2104.04269 (2021).

  • Mingo, J. M., Aler, R., Maravall, D. & de Lope, J. Investigations into lamarckism, baldwinism and local search in grammatical evolution guided by reinforcement. Comput. Inf. 32, 595–627 (2013).

    MATH 

    Google Scholar 

  • Whitley, D., Gordon, V. S. & Mathias, K. Lamarckian evolution, the baldwin effect and function optimization. In Parallel Problem Solving from Nature-PPSN III: International Conference on Evolutionary Computation the Third Conference on Parallel Problem Solving from Nature Jerusalem, Israel 9–14, 1994 Proceedings 3, 5–15 (Springer, 1994).

  • Holzinger, A. et al. Darwin, lamarck, or baldwin: Applying evolutionary algorithms to machine learning techniques. In 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), vol. 2, 449–453, https://doi.org/10.1109/WI-IAT.2014.132 (2014).

  • Mikami, S., Wada, M. & Kakazu, Y. Combining reinforcement learning with ga to find co-ordinated control rules for multi-agent system. In Proceedings of IEEE international conference on evolutionary computation, 356–361 (IEEE, 1996).

  • Ku, K. W. C., Mak, M. W. & Siu, W. C. Adding learning to cellular genetic algorithms for training recurrent neural networks. IEEE Trans. Neural Netw. 10, 239–252 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Houck, C. R., Joines, J. A., Kay, M. G. & Wilson, J. R. Empirical investigation of the benefits of partial lamarckianism. Evol. Comput. 5, 31–60 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Castillo, P. A. et al. Lamarckian evolution and the baldwin effect in evolutionary neural networks (2006). arxiv:cs/0603004.

  • Zhang, C., Chen, J. & Xin, B. Distributed memetic differential evolution with the synergy of lamarckian and baldwinian learning. Appl. Soft Comput. 13, 2947–2959. https://doi.org/10.1016/j.asoc.2012.02.028 (2013).

    Article 

    Google Scholar 

  • Elsken, T., Metzen, J. H. & Hutter, F. Efficient multi-objective neural architecture search via lamarckian evolution. arXiv preprint arXiv:1804.09081 (2018).

  • Nishiwaki, Y., Mukosaka, N., Tanev, I. & Shimohara, K. On the effects of epigenetic programming on the efficiency of incremental evolution of the simulated Khepera robot. J. Robot. Netw. Artif. Life 2, 108. https://doi.org/10.2991/jrnal.2015.2.2.9 (2015).

    Article 

    Google Scholar 

  • Grefenstette, J. J. Lamarckian learning in multi-agent environments. In International conference on genetic algorithms (1991).

  • Jelisavcic, M., Glette, K., Haasdijk, E. & Eiben, A. Lamarckian evolution of simulated modular robots. Front. Robot. AI 6, 9 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jelisavcic, M., Miras, K. & Eiben, A. Morphological attractors in Darwinian and Lamarckian evolutionary robot systems. In 2018 IEEE symposium series on computational intelligence (SSCI), 859–866 (IEEE, 2018).

  • Miras, K., Haasdijk, E., Glette, K. & Eiben, A. Search space analysis of evolvable robot morphologies. In International conference on the applications of evolutionary computation, 703–718 (Springer, 2018).

  • Pawlik, M. & Augsten, N. Tree edit distance: Robust and memory-efficient. Inf. Syst.https://doi.org/10.1016/j.is.2015.08.004 (2015).

    Article 
    MATH 

    Google Scholar 

  • Pfeifer, R. & Bongard, J. How the body shapes the way we think: a new view of intelligence (MIT press, 2007).

  • Auerbach, J. E. et al. Robogen: Robot generation through artificial evolution. In Proceedings of the 14th international conference on the synthesis and simulation of living systems, ALIFE 2014, 136–137 (2014).

  • Stanley, K. O. Compositional pattern producing networks: A novel abstraction of development. Genet. Program Evolvable Mach. 8, 131–162 (2007).

    Article 

    Google Scholar 

  • van Diggelen, F., Ferrante, E. & Eiben, A. E. Comparing lifetime learning methods for morphologically evolving robots. In GECCO ’21: Proceedings of the genetic and evolutionary computation conference companion, 93–94 (2021).

  • Tomczak, J. M., Weglarz-Tomczak, E. & Eiben, A. E. Differential evolution with reversible linear transformations. In Proceedings of the 2020 genetic and evolutionary computation conference companion, 205–206. arxiv:2002.02869. (2020).

  • Weglarz-Tomczak, E., Tomczak, J. M., Eiben, A. E. & Brul, S. Population-based parameter identification for dynamical models of biological networks with an application to saccharomyces cerevisiae. Processes 9, 98 (2021).

    Article 
    CAS 

    Google Scholar 

  • Storn, R. M. Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 131–141 (1997).

  • Pedersen, M. Good parameters for differential evolution. Evolution. 1–10 (2010).

  • Credit: Source link

    Cryptohopper
    ADVERTISEMENT
    [crypto-donation-box]
    Tags: enhancingEvolutionLamarckianPrinciplesRobot
    Share76Tweet47
    Ledger Nano X - The secure hardware wallet
    Previous Post

    Legendary Trader Raoul Pal Makes Rare Ethereum vs. Solana Comparison By U.Today

    Next Post

    ‘Mysterious’ Address That Added 10K Bitcoin Is Just a New BitMEX Wallet

    Related Posts

    Polkadot Price Likely to Crash xx% Despite Recent Protocol Upgrade

    Polkadot Price Likely to Crash xx% Despite Recent Protocol Upgrade

    30 July 2024
    0

    Polkadot price suffers bearish pressure despite continued network developments. The latest in the blockchain upgrade is the asynchronous backing which...

    Here’s Why UNI and Polkadot (DOT) Holders Are Flocking To Rollblock

    Here’s Why UNI and Polkadot (DOT) Holders Are Flocking To Rollblock

    28 July 2024
    0

    Though some investors are content with 2-10x returns, the vast majority of investors enter the crypto marketplace to make parabolic...

    Dotcoin Tap-to-Play Game Set to Launch on Venom

    Dotcoin Tap-to-Play Game Set to Launch on Venom

    26 July 2024
    0

    One of the most popular tap-to-play games on Telegram, Dotcoin, is launching on the Venom blockchain. Dotcoin, with over 20...

    Is Polkadot (DOT) a Millionaire Maker?

    Is Polkadot (DOT) a Millionaire Maker?

    24 July 2024
    0

    Is Polkadot the next big thing in crypto? Find out what the future holds for this harbinger and enabler of...

    BlockDAG’s M Presale Boost, Tied with UFC Champ Alex Pereira, Disrupts Polkadot and Litecoin Market Predictions

    BlockDAG’s $60M Presale Boost, Tied with UFC Champ Alex Pereira, Disrupts Polkadot and Litecoin Market Predictions

    22 July 2024
    0

    Polkadot and Litecoin are navigating through turbulent market waters, facing bearish predictions. In this challenging environment, BlockDAG has emerged as...

    Load More
    Next Post
    ‘Mysterious’ Address That Added 10K Bitcoin Is Just a New BitMEX Wallet

    'Mysterious' Address That Added 10K Bitcoin Is Just a New BitMEX Wallet

    Leave a Reply Cancel reply

    Your email address will not be published. Required fields are marked *

    Plugin Install : Widget Tab Post needs JNews - View Counter to be installed
    • Trending
    • Comments
    • Latest
    Ethereum Investors Double Down As Staking Activity Spikes Sharply – Here’s How Much

    Ethereum Investors Double Down As Staking Activity Spikes Sharply – Here’s How Much

    11 September 2025
    Big Solana News: Latest Developments Could Ignite Major Price Surge – TechFinancials

    Big Solana News: Latest Developments Could Ignite Major Price Surge – TechFinancials

    11 September 2025
    Why New Crypto Investors Favour Backing Layer Brett Over Solana In September

    Why New Crypto Investors Favour Backing Layer Brett Over Solana In September

    11 September 2025
    ADA Price Holds Key Support Despite 0M Whale Sell-Off

    ADA Price Holds Key Support Despite $140M Whale Sell-Off

    11 September 2025

    About Us

    We publish a comprehensive news feed covering all news relevant to the crypto user, covering main industry news, politics and regulation as well as consumer-level “news you can use” (practical stuff), including handy DIY tips, links to useful tools, unbiased reviews and opinions revolving around cryptocurrency. Simple logic and real-world examples are preferred before technical jargon and personal rants.

    Categories

    • Altcoin
    • ApeCoin
    • Bitcoin
    • Blockchain
    • BNB
    • Cardano
    • Cryptocurrency
    • DOGE
    • DOT
    • Ethereum
    • HBAR
    • Litecoin
    • Market
    • Meta News
    • Mining
    • NFT
    • QNT
    • Regulation
    • SHIBA
    • Solano
    • Tether
    • Uncategorized
    • XDC
    • XLM
    • XRP

    What’s New Here!

    • Ethereum Investors Double Down As Staking Activity Spikes Sharply – Here’s How Much
    • Big Solana News: Latest Developments Could Ignite Major Price Surge – TechFinancials
    • Why New Crypto Investors Favour Backing Layer Brett Over Solana In September
    • ADA Price Holds Key Support Despite $140M Whale Sell-Off
    • Here’s why Bitwise is tipping Solana for an end-of-year rally. And what could stall it – Yahoo Finance

    Subscribe Now

    Our Partner

    Round Main Logo
    • About Us
    • Privacy Policy
    • Contact Us

    © 2022-2025 coin24h.com

    No Result
    View All Result
    • Home
    • Cryptocurrency
      • Bitcoin
      • Ethereum
      • XRP
      • Litecoin
      • Altcoin
      • Cardano
      • Tether
      • DOGE
      • Solano
      • XLM
      • DOT
      • XDC
      • SHIBA
      • BNB
      • Ape
      • HBAR
      • QNT
    • Blockchain
    • Regulation
    • Market
    • Live
      • Prices
      • ICO
    • Meta
      • NFT
    • Technical Analysis
      • XRP
      • BTC
      • XLM
      • ADA
      • TETHER
      • ETC
      • ETH
      • DOGE
      • LTC
    • Exchange
    • Mining

    © 2020 coin24h.com

    Welcome Back!

    Login to your account below

    Forgotten Password? Sign Up

    Create New Account!

    Fill the forms below to register

    All fields are required. Log In

    Retrieve your password

    Please enter your username or email address to reset your password.

    Log In
    • bitcoinBitcoin (BTC) $ 114,325.00
    • ethereumEthereum (ETH) $ 4,420.92
    • xrpXRP (XRP) $ 3.00
    • tetherTether (USDT) $ 1.00
    • bnbBNB (BNB) $ 895.70
    • solanaSolana (SOL) $ 227.97
    • usd-coinUSDC (USDC) $ 0.999813
    • staked-etherLido Staked Ether (STETH) $ 4,411.90
    • dogecoinDogecoin (DOGE) $ 0.248515
    • tronTRON (TRX) $ 0.345664
    • cardanoCardano (ADA) $ 0.880671
    • wrapped-stethWrapped stETH (WSTETH) $ 5,353.58
    • chainlinkChainlink (LINK) $ 23.63
    • wrapped-beacon-ethWrapped Beacon ETH (WBETH) $ 4,760.85
    • hyperliquidHyperliquid (HYPE) $ 54.94
    • wrapped-bitcoinWrapped Bitcoin (WBTC) $ 114,478.00
    • ethena-usdeEthena USDe (USDE) $ 1.00
    • suiSui (SUI) $ 3.61
    • stellarStellar (XLM) $ 0.388892
    • figure-helocFigure Heloc (FIGR_HELOC) $ 0.993547
    • avalanche-2Avalanche (AVAX) $ 29.03
    • wrapped-eethWrapped eETH (WEETH) $ 4,748.85
    • bitcoin-cashBitcoin Cash (BCH) $ 590.25
    • wethWETH (WETH) $ 4,419.28
    • hedera-hashgraphHedera (HBAR) $ 0.234853
    • leo-tokenLEO Token (LEO) $ 9.57
    • litecoinLitecoin (LTC) $ 114.20
    • crypto-com-chainCronos (CRO) $ 0.255209
    • the-open-networkToncoin (TON) $ 3.18
    • usdsUSDS (USDS) $ 0.999841
    • shiba-inuShiba Inu (SHIB) $ 0.000013
    • binance-bridged-usdt-bnb-smart-chainBinance Bridged USDT (BNB Smart Chain) (BSC-USD) $ 1.00
    • coinbase-wrapped-btcCoinbase Wrapped BTC (CBBTC) $ 114,403.00
    • polkadotPolkadot (DOT) $ 4.18
    • whitebitWhiteBIT Coin (WBT) $ 43.42
    • uniswapUniswap (UNI) $ 9.82
    • ethena-staked-usdeEthena Staked USDe (SUSDE) $ 1.20
    • world-liberty-financialWorld Liberty Financial (WLFI) $ 0.200228
    • ethenaEthena (ENA) $ 0.763357
    • mantleMantle (MNT) $ 1.61
    • moneroMonero (XMR) $ 269.31
    • aaveAave (AAVE) $ 303.68
    • bitget-tokenBitget Token (BGB) $ 4.86
    • daiDai (DAI) $ 0.999965
    • pepePepe (PEPE) $ 0.000010
    • okbOKB (OKB) $ 194.63
    • bittensorBittensor (TAO) $ 354.08
    • nearNEAR Protocol (NEAR) $ 2.70
    • jito-staked-solJito Staked SOL (JITOSOL) $ 280.07
    • memecoreMemeCore (M) $ 1.96