• Home
  • Cryptocurrency
    • Bitcoin
    • Ethereum
    • XRP
    • Litecoin
    • Altcoin
    • Cardano
    • Tether
    • DOGE
    • Solano
    • XLM
    • DOT
    • XDC
    • SHIBA
    • BNB
    • Ape
    • HBAR
    • QNT
  • Blockchain
  • Regulation
  • Market
  • Live
    • Prices
    • ICO
  • Meta
    • NFT
  • Technical Analysis
    • XRP
    • BTC
    • XLM
    • ADA
    • TETHER
    • ETC
    • ETH
    • DOGE
    • LTC
  • Exchange
  • Mining
Thursday, September 11, 2025
  • Login
  • Register
Coin24h.com
  • Home
  • Cryptocurrency
    • Bitcoin
    • Ethereum
    • XRP
    • Litecoin
    • Altcoin
    • Cardano
    • Tether
    • DOGE
    • Solano
    • XLM
    • DOT
    • XDC
    • SHIBA
    • BNB
    • Ape
    • HBAR
    • QNT
  • Blockchain
  • Regulation
  • Market
  • Live
    • Prices
    • ICO
  • Meta
    • NFT
  • Technical Analysis
    • XRP
    • BTC
    • XLM
    • ADA
    • TETHER
    • ETC
    • ETH
    • DOGE
    • LTC
  • Exchange
  • Mining
No Result
View All Result
  • Home
  • Cryptocurrency
    • Bitcoin
    • Ethereum
    • XRP
    • Litecoin
    • Altcoin
    • Cardano
    • Tether
    • DOGE
    • Solano
    • XLM
    • DOT
    • XDC
    • SHIBA
    • BNB
    • Ape
    • HBAR
    • QNT
  • Blockchain
  • Regulation
  • Market
  • Live
    • Prices
    • ICO
  • Meta
    • NFT
  • Technical Analysis
    • XRP
    • BTC
    • XLM
    • ADA
    • TETHER
    • ETC
    • ETH
    • DOGE
    • LTC
  • Exchange
  • Mining
No Result
View All Result
Coin24h.com
No Result
View All Result
Ledger Nano X - The secure hardware wallet
ADVERTISEMENT

New magneto-polaron resonances in a monolayer of a transition metal dichalcogenide

6 January 2023
in HBAR
Reading Time: 9 mins read
A A
0
New magneto-polaron resonances in a monolayer of a transition metal dichalcogenide
189
SHARES
1.5k
VIEWS
Share on FacebookShare on Twitter
cryptotrader
ADVERTISEMENT

Related articles

BlockDAG’s CEO and Team Announced: Expected to Surpass Hedera and Polygon with a  Projection

BlockDAG’s CEO and Team Announced: Expected to Surpass Hedera and Polygon with a $1 Projection

30 July 2024
VeChain (VET) And Hedera (HBAR) Triple Red Charts. Rollblock (RBLK) Seems The Summer Sure Money Bet – Times Tabloid

VeChain (VET) And Hedera (HBAR) Triple Red Charts. Rollblock (RBLK) Seems The Summer Sure Money Bet – Times Tabloid

28 July 2024

General formulation

For the description of the MP resonance we employed the Green’s function method that reveals the inherent symmetries of phonons in the TMD and their influence on the MP quasiparticles. Other existing methods (for example, the modified Wigner- Brillouin perturbation theory) allow one to consider the influence of the EPIs in the MP spectrum and the coupling between the Landau states4, rather than the direct evaluation of the life-time and the interconnection between these MP characteristics as a function of the external magnetic field.

We consider a 2D TMD in an external uniform magnetic field \({\textbf {B}}=B{\textbf {e}}_z\) applied along the z-direction perpendicular to the plane of the sample. For a description of the MP properties, we start from the Dyson equation for the full Green’s function G(E, N)49 for a particle in a static B

$$\begin{aligned} G(E,N) = G^{(0)}(E,N)+ G^{(0)}(E,N)\sum _{M}S(E,N,M)G(E,M)\;, \end{aligned}$$

(3)

where \(G^{(0)}(E,N)\) is the one-particle unperturbed Green’s function at \(T=0\) K, S(E, N, M) is the self-energy considering the interaction of the electronic Landau levels with the optical phonons and the sum is taken over all Landau states. Assuming a free 2D electron gas with a parabolic dispersion and an isotropic effective mass m under a constant B and neglecting the spin degree of freedom, the electronic wave function can be cast as

$$\begin{aligned} \psi _{N,k_y}= & {} \frac{1}{\sqrt{L}}e^{ik_{y}y}\varphi _{N}(x-x_{0}(k_{y}))\;;\;\;\;\;\;\; (N=0,1,2,…)\;, \end{aligned}$$

(4)

where \(k_{y}\) is the particle wave vector, \(\varphi _{N}\) the harmonic oscillator functions, \(x_0=-k_yl^2_c\) the center of the orbit, \(l_c=(\hbar c/eB)^{1/2}\) the Landau magnetic length and L the normalization constant8. The corresponding energy, without EPI, is \(\epsilon _{N}=\hbar \omega _{c}(N+1/2)\) with \(\omega _{c}=eB/mc\). In the Landau representation, the zero-temperature bare electron Green’s function is \(G^{(0)}(E,N)=[E-\epsilon _{N}-i\delta ]^{-1}\) with \(\delta\) a residual life-time broadening50. Solving the Eq. (3) for the dressed Green’s function G(E, N), we obtain the resonant MP energy. The contribution of the self-energy to the renormalized Green’s function is determined by the EPIs. In 2D TMDs, at the center of the Brillouin Zone (BZ), there exist in-plane optical phonons (degenerate LO and TO branches) and one out-of-plane mode (ZO-homopolar branch) belonging to the irreducible representations \(E^{‘}(\text {LO})\) and \(A_1\), respectively51. The symmetries of these phonons are responsible for the electron intra-valley transitions via the long-range PF interaction for the LO-phonons and the short-range DP mechanism for the \(A_1\)-homopolar mode. Hence, both interactions have to be summed up for a correct evaluation of the self-energy: \(S(E,N,M)=S_{\text {PF}}(E,N,M)+S_{\text {DP}}{(E,N,M})\). It is possible to show that S(E, N, M) is diagonal in the Landau quantum numbers N, M, that is \(S(E,N,M)=\delta _{N,M}S(E,N)\) (see below). Thus, the Dyson equation for the full Green’s function G(E, N) is reduced to

$$\begin{aligned} G(E,N) = \frac{1}{\left[ G^{(0)}(E,N)\right] ^{-1} – \left[ S_{\text {DP}}(E,N)+S_{\text {PF}}(E,N)\right] }\;. \end{aligned}$$

(5)

The complex energy is \(E=\hat{\epsilon }+i\Gamma\), where \({\hat{\epsilon }}=\)Re[E] and \(\Gamma =\)Im[E] are the MP energy and its life-time broadening, respectively. The pole of the dressed Green’s function determines the renormalized energy \(\hat{\epsilon }(B)\), while the life-time broadening \(\Gamma (B)\) is given by \(\text {Im}[G(E,N)^{-1}]\)8,49. From Eq. (5), we derive

$$\begin{aligned} {\hat{\epsilon }} = \hbar \omega _c\left( N +1/2\right) + \text {Re}\left[ S_{\text {DP}}(E,N)+S_{\text {PF}}(E,N) \right] \;, \end{aligned}$$

(6)

and

$$\begin{aligned} \Gamma = \text {Im}\left[ S_{\text {DP}}(E,N)+S_{\text {PF}}(E,N)\right]. \end{aligned}$$

(7)

Equations (6) and (7) are a set of two coupled transcendental non-linear equations. Solving them simultaneously, we obtain in what follows the energy spectrum \({\hat{\epsilon }}(B)\) as well as the the life-time broadening \(\Gamma (B)\).

Self-energy

In 2D TMDs, the LO and \(A_1\)(ZO)-modes are responsible for the particle intra-valley transitions at the K point. Thus, the long-range PF and short-range DP interactions must be taken into account for a correct evaluation of the self-energy. The general structure of the EPI Hamiltonian is cast as

$$\begin{aligned} {\hat{H}}_{j}= \sum _{{\textbf {q}}} \left[ C_{{\textbf {q}}}^{(j)}e^{i\small {{\textbf {q}}\cdot \varvec{\rho }}}{\hat{b}}_{{\textbf {q}}}+C_{\textbf {q}}^{{(j)}\dag }e^{-i\small {{\textbf {q}}\cdot \varvec{\rho }}}{\hat{b}}_{{\textbf {q}}}^\dag \right], \end{aligned}$$

(8)

where \(C_{{\textbf {q}}}^{(j)}\) is the coupling constant, \(j=\) PF and DP, \(\varvec{\rho }\) the in-plane coordinate and \({\hat{b}}_{{\textbf {q}}}\) (\({\hat{b}}_{{\textbf {q}}}^\dag\)) the annihilation (creation) phonon operator with the phonon wave vector \({\textbf {q}}\). Employing Eqs. (4) and (8), the polaron effect is considered through the self-energy S(E, N, M) of the Green’s function of Eq. (5). Considering the electronic wave function of Eq. (4), the irreducible self-energy (obtained when keeping only the Feynman diagrams, which cannot be separated into two disconnected pieces49,52) to the lowest order in the coupling constant \(C_{{\textbf {q}}}^{(j)}\) can be written as

$$\begin{aligned} S_{j}(E,N,M)= & {} \sum _{N’,k^{\prime }_y,k^{\prime \prime }_y,{\textbf {q}}}G^{(0)}(E-\hbar \omega _0,N’) C_q^{(j)} \langle N’,k^\prime _{y}\vert e^{i\small {{\textbf {q}}\cdot \varvec{\rho }}}\vert N,k_{y}\rangle \arrowvert C_q^{*(j)}\langle M,k_{y}^{\prime \prime }\vert e^{i\small {{\textbf {q}}\cdot \varvec{\rho }}}\vert N’,k_{y}^{\prime }\rangle \end{aligned}$$

(9)

$$\begin{aligned}= & {} \sum _{N’,k^{\prime }_y,k^{\prime \prime }_y,{\textbf {q}}} G^{(0)}(E-\hbar \omega _0,N’) \arrowvert C_q^{(j)}\arrowvert ^2\mathscr {L}_{N’,N}({\textbf {q}})\delta _{k^{\prime }_{y},k_{y}-q_{y}} \mathscr {L}^{*}_{M,N’}({\textbf {q}})\delta _{k^{\prime \prime }_{y},k_{y}^{\prime }-q_{y}}. \end{aligned}$$

(10)

The matrix element \(\mathscr {L}_{N’,N}({\textbf {q}})\) is

$$\begin{aligned} \mathscr {L}_{N’,N}({\textbf {q}})=\int _{-\infty }^{\infty }\varphi _{N’}(x-x_0(k^{\prime }_{y}) )\varphi _N(x-x_0(k_{y}))e^{-iq_{x}x} dx, \end{aligned}$$

(11)

and \(k^{\prime }_{y}=k_{y}-q_y\). Integrating over the coordinate x, we obtain

$$\begin{aligned} \mathscr {L}_{N’,N}({\textbf {q}})= & {} e^{-\frac{i}{2} q_x(k_y+k^{\prime }_y)l_c^{2}}e^{-\frac{1}{4}l_c^2q_{\perp }^2}\times \nonumber \\{} & {} \left\{ \begin{array}{lcl} 2^{\frac{N-N’}{2}}\sqrt{\frac{N’!}{N!}}\left[ \frac{l_c}{2}(q_y-iq_x)\right] ^{N-N’} L_{N’}^{N-N’}\left( \frac{1}{2}l_c^2 q_{\perp }^2\right) \,, &{}\text {for}\,&{} N \geqslant N’,\\ 2^{\frac{N’-N}{2}}\sqrt{\frac{N!}{N’!}}\left[ -\frac{l_c}{2}(q_y+iq_x)\right] ^{N’-N} L_{N}^{N’-N}\left( \frac{1}{2}l_c^2 q_{\perp }^2\right) \,, &{} \text {for} &{} N<N’, \end{array} \right. \end{aligned}$$

(12)

with \(L_{p}^{q}(z)\) the generalized Laguerre polynomials53. Representing q in the cylindrical coordinates and integrating over the polar angle result in \(S_{j}(E,N,M)=\delta _{N,M}S_{j}(E,N)\), where

$$\begin{aligned} S_{j}(E,N)&=l_c^{-2}&\sum _{N’} G^{(0)}(E-\hbar \omega _{0},N’) \frac{S}{2\pi }\int _0^{\infty }\arrowvert C_Q^{(j)} \arrowvert ^2T_{N’,N}(Q)dQ, \end{aligned}$$

(13)

and

$$\begin{aligned} T_{N’,N}(Q)=e^{-Q}{} & {} \left\{ \begin{array}{lcl} \frac{N’!}{N!}Q^{N-N’}\arrowvert L_{N’}^{N-N’}(Q)\arrowvert ^2 &{} \text {for}\,, &{} N \geqslant N’\;, \\ \frac{N!}{N’!}Q^{N’-N}\arrowvert L_{N}^{N’-N}(Q)\arrowvert ^2 &{} \text {for}\,, &{} N<N’. \end{array} \right. \end{aligned}$$

(14)

Table 1 Employed parameters for the calculation of the energy spectrum from the set of Eqs. (6) and (7). The value of \(\delta /\hbar \omega _{A_1}=0.02\) is used. a is the lattice constant and \(\mathbb {G}_{Ph}\) is the PF coupling constant of Eq. (19).

Intra-band deformation potential

The DP characterizes the changes of the band energy under mechanical deformations of the primitive unit cell due to the optical lattice oscillations of the out-of-plane \(A_1\)-homopolar branch. In first-order approximation, the EPI is independent of the phonon wave vector, and the DP coupling constant is41

$$\begin{aligned} C_q^{\text {DP}} = \left( \frac{\hbar }{2\rho _mA N_c\omega _{A_1}}\right) ^{1/2}D_c, \end{aligned}$$

(15)

where \(\rho _m\) is the 2D reduced mass density associated with the two chalcogen atoms, \(\omega _{A_1}\) the ZO-phonon frequency, \(D_c\) the deformation potential constant, \(A=\sqrt{3}a^2/2\) the area of the unit cell, a the lattice constant, and \(N_c\) the number of cells. Taking advantage of the fact that \(C_q^{\text {DP}}\) is independent of the phonon wave vector and employing the result \(\int _0^{\infty }T_{N^{‘},N}(Q)dQ=1\)55, the self-energy acquires the form

$$\begin{aligned} S_{\text {DP}}(E,N) = \hbar \omega _{c}\hbar \omega _{A_1}\alpha _{\text {DP}}&\sum \limits _{N’}[E-\hbar \omega _{A_1}-\hbar \omega _{c}(N’+1/2)-i\delta ]^{-1}\; \end{aligned}$$

(16)

with

$$\begin{aligned} \alpha _{\text {DP}}=\frac{m}{4\pi \rho _m }\left( \frac{D_c}{\hbar \omega _{A_1}}\right) ^2\;. \end{aligned}$$

(17)

Pekar–Fröhlich interaction

The in-plane motion of the positive M-ion relative to the X\(_{i}\)-ions is responsible for the long-range interaction. The macroscopic electrostatic potential associated with the in-plane LO-vibrations acts on the electron, leading to the EPI valid for a ML of TMD with a coupling constant41

$$\begin{aligned} C_q^{\text {PF}}= & {} \frac{\mathbb {G}_{Ph}}{\sqrt{N{_c}}(1+r_0q)}, \end{aligned}$$

(18)

$$\begin{aligned} \mathbb {G}_{Ph}= & {} \left( \frac{2 \pi ^2 e^2\hbar \alpha ^2}{\rho _mA\omega _{\text {LO}}}\right) ^{1/2}, \end{aligned}$$

(19)

where \(\omega _{\text {LO}}\) is the in-plane phonon-frequency at \({q}={0}\), \(\rho _{m}\) the mass density with the reduced atomic mass \(\mu =m_{_{\text {M}}}^{-1}+(2m_{_{\text {X}}})^{-1}\), \(\alpha\) the coupling constant between the atomic displacement and the in-plane macroscopic electric field, and \(r_0\) the screening parameter41. In this case, the contribution of the long-range interaction to the self-energy is

$$\begin{aligned} S_{\text {PF}}(E,N)=\hbar \omega _{c}\hbar \omega _{A_1}\alpha _{\text {PF}}\sum _{N’}\frac{f_{N’,N}(r_0/l_c)}{E-\hbar \omega _{\text {LO}}-\hbar \omega _c\left( N’+\frac{1}{2}\right) -i\delta }, \end{aligned}$$

(20)

where

$$\begin{aligned} \alpha _{\text {PF}}=\frac{A\mathbb {G}_{Ph}^2}{2\pi \hbar \omega _{A_1}}\frac{m}{\hbar ^2} \end{aligned}$$

(21)

and

$$\begin{aligned} f_{N’,N}(z)=\int \limits _0^\infty \frac{dQ}{\left( 1+z\sqrt{2Q}\right) ^2} T_{N’,N}(Q). \end{aligned}$$

From the self-energy as given by Eqs. (16) and (20), it follows immediately that a mixing effect for the MP energy is present. The summation over all Landau levels leads to a coupling between different states. For a given quantum number N, the relative contribution of the other states \(N’\) to E depends on the coupling constants \(\alpha _{\text {DP}}\) and \(\alpha _{\text {PF}}\).

Source link

Cryptohopper
ADVERTISEMENT
[crypto-donation-box]
Tags: dichalcogenidemagnetopolaronMetalmonolayerresonancesTransition
Share76Tweet47
Ledger Nano X - The secure hardware wallet
Previous Post

Crypto Exchange Huobi Experiences Heavy Token Outflows: Nansen

Next Post

2023 Portfolio Hot Picks – PancakeSwap (CAKE), Orbeon Protocol (ORBN), and Ripple (XRP)

Related Posts

BlockDAG’s CEO and Team Announced: Expected to Surpass Hedera and Polygon with a  Projection

BlockDAG’s CEO and Team Announced: Expected to Surpass Hedera and Polygon with a $1 Projection

30 July 2024
0

In the latest Hedera (HBAR) update, the integration of Blade, a self-custody Web3 wallet, demonstrates Hedera’s commitment to simplifying digital...

VeChain (VET) And Hedera (HBAR) Triple Red Charts. Rollblock (RBLK) Seems The Summer Sure Money Bet – Times Tabloid

VeChain (VET) And Hedera (HBAR) Triple Red Charts. Rollblock (RBLK) Seems The Summer Sure Money Bet – Times Tabloid

28 July 2024
0

VeChain and Hedera have been in freefall since the start of the March correction. Despite both being fundamentally solid projects...

400,000 New Hedera Accounts in One Week: Blade Wallet in

400,000 New Hedera Accounts in One Week: Blade Wallet in

25 July 2024
0

Hedera Network is growing with a massive 400,000 new accounts bagged in one week. The network is looking to serve...

Why Whales Are Betting Big on WW3Shiba and Shifting from Dogecoin!

Why Whales Are Betting Big on WW3Shiba and Shifting from Dogecoin!

24 July 2024
0

Hedera (HBAR) is capitalizing on its innovative technology to challenge Bitcoin's (BTC) legacy. Bitcoin continues to shrug off challenges from...

This New Crypto Presale Has Gone Viral In July As HBAR and FIL Holders Are Lured By 100x Potential

This New Crypto Presale Has Gone Viral In July As HBAR and FIL Holders Are Lured By 100x Potential

22 July 2024
0

As Bitcoin climbs to its all-time high, investors holding altcoins like Hedera (HBAR) and Filecoin (FIL) are considering new tokens...

Load More
Next Post
2023 Portfolio Hot Picks – PancakeSwap (CAKE), Orbeon Protocol (ORBN), and Ripple (XRP)

2023 Portfolio Hot Picks - PancakeSwap (CAKE), Orbeon Protocol (ORBN), and Ripple (XRP)

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Plugin Install : Widget Tab Post needs JNews - View Counter to be installed
  • Trending
  • Comments
  • Latest
ADA Price Holds Key Support Despite 0M Whale Sell-Off

ADA Price Holds Key Support Despite $140M Whale Sell-Off

11 September 2025
Here’s why Bitwise is tipping Solana for an end-of-year rally. And what could stall it – Yahoo Finance

Here’s why Bitwise is tipping Solana for an end-of-year rally. And what could stall it – Yahoo Finance

11 September 2025
BNB Hits New All-Time High Above 7 Amid Strong Futures Activity – Coinspeaker

BNB Hits New All-Time High Above $907 Amid Strong Futures Activity – Coinspeaker

11 September 2025
CryptoQuant Predicts BNB To Hit ,000

CryptoQuant Predicts BNB To Hit $1,000

11 September 2025

About Us

We publish a comprehensive news feed covering all news relevant to the crypto user, covering main industry news, politics and regulation as well as consumer-level “news you can use” (practical stuff), including handy DIY tips, links to useful tools, unbiased reviews and opinions revolving around cryptocurrency. Simple logic and real-world examples are preferred before technical jargon and personal rants.

Categories

  • Altcoin
  • ApeCoin
  • Bitcoin
  • Blockchain
  • BNB
  • Cardano
  • Cryptocurrency
  • DOGE
  • DOT
  • Ethereum
  • HBAR
  • Litecoin
  • Market
  • Meta News
  • Mining
  • NFT
  • QNT
  • Regulation
  • SHIBA
  • Solano
  • Tether
  • Uncategorized
  • XDC
  • XLM
  • XRP

What’s New Here!

  • ADA Price Holds Key Support Despite $140M Whale Sell-Off
  • Here’s why Bitwise is tipping Solana for an end-of-year rally. And what could stall it – Yahoo Finance
  • BNB Hits New All-Time High Above $907 Amid Strong Futures Activity – Coinspeaker
  • CryptoQuant Predicts BNB To Hit $1,000
  • Morning Minute: Solana's New Path to ATH – Yahoo Finance

Subscribe Now

Our Partner

Round Main Logo
  • About Us
  • Privacy Policy
  • Contact Us

© 2022-2025 coin24h.com

No Result
View All Result
  • Home
  • Cryptocurrency
    • Bitcoin
    • Ethereum
    • XRP
    • Litecoin
    • Altcoin
    • Cardano
    • Tether
    • DOGE
    • Solano
    • XLM
    • DOT
    • XDC
    • SHIBA
    • BNB
    • Ape
    • HBAR
    • QNT
  • Blockchain
  • Regulation
  • Market
  • Live
    • Prices
    • ICO
  • Meta
    • NFT
  • Technical Analysis
    • XRP
    • BTC
    • XLM
    • ADA
    • TETHER
    • ETC
    • ETH
    • DOGE
    • LTC
  • Exchange
  • Mining

© 2020 coin24h.com

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In
  • bitcoinBitcoin (BTC) $ 114,497.00
  • ethereumEthereum (ETH) $ 4,429.17
  • xrpXRP (XRP) $ 3.00
  • tetherTether (USDT) $ 1.00
  • bnbBNB (BNB) $ 899.07
  • solanaSolana (SOL) $ 227.07
  • usd-coinUSDC (USDC) $ 0.999767
  • staked-etherLido Staked Ether (STETH) $ 4,421.64
  • dogecoinDogecoin (DOGE) $ 0.249347
  • tronTRON (TRX) $ 0.345327
  • cardanoCardano (ADA) $ 0.878111
  • wrapped-stethWrapped stETH (WSTETH) $ 5,360.06
  • chainlinkChainlink (LINK) $ 23.63
  • wrapped-beacon-ethWrapped Beacon ETH (WBETH) $ 4,772.91
  • hyperliquidHyperliquid (HYPE) $ 54.40
  • wrapped-bitcoinWrapped Bitcoin (WBTC) $ 114,558.00
  • ethena-usdeEthena USDe (USDE) $ 1.00
  • suiSui (SUI) $ 3.61
  • stellarStellar (XLM) $ 0.386949
  • figure-helocFigure Heloc (FIGR_HELOC) $ 0.992931
  • avalanche-2Avalanche (AVAX) $ 28.84
  • wrapped-eethWrapped eETH (WEETH) $ 4,759.29
  • bitcoin-cashBitcoin Cash (BCH) $ 593.48
  • wethWETH (WETH) $ 4,429.84
  • hedera-hashgraphHedera (HBAR) $ 0.234997
  • leo-tokenLEO Token (LEO) $ 9.56
  • litecoinLitecoin (LTC) $ 113.92
  • crypto-com-chainCronos (CRO) $ 0.256085
  • the-open-networkToncoin (TON) $ 3.17
  • usdsUSDS (USDS) $ 0.999739
  • shiba-inuShiba Inu (SHIB) $ 0.000013
  • binance-bridged-usdt-bnb-smart-chainBinance Bridged USDT (BNB Smart Chain) (BSC-USD) $ 1.00
  • coinbase-wrapped-btcCoinbase Wrapped BTC (CBBTC) $ 114,447.00
  • polkadotPolkadot (DOT) $ 4.18
  • whitebitWhiteBIT Coin (WBT) $ 43.36
  • uniswapUniswap (UNI) $ 9.82
  • ethena-staked-usdeEthena Staked USDe (SUSDE) $ 1.20
  • world-liberty-financialWorld Liberty Financial (WLFI) $ 0.202135
  • mantleMantle (MNT) $ 1.61
  • ethenaEthena (ENA) $ 0.759176
  • moneroMonero (XMR) $ 272.80
  • aaveAave (AAVE) $ 303.00
  • bitget-tokenBitget Token (BGB) $ 4.92
  • daiDai (DAI) $ 0.999804
  • pepePepe (PEPE) $ 0.000010
  • okbOKB (OKB) $ 194.21
  • bittensorBittensor (TAO) $ 355.16
  • nearNEAR Protocol (NEAR) $ 2.70
  • jito-staked-solJito Staked SOL (JITOSOL) $ 278.76
  • worldcoin-wldWorldcoin (WLD) $ 1.62