• Home
  • Cryptocurrency
    • Bitcoin
    • Ethereum
    • XRP
    • Litecoin
    • Altcoin
    • Cardano
    • Tether
    • DOGE
    • Solano
    • XLM
    • DOT
    • XDC
    • SHIBA
    • BNB
    • Ape
    • HBAR
    • QNT
  • Blockchain
  • Regulation
  • Market
  • Live
    • Prices
    • ICO
  • Meta
    • NFT
  • Technical Analysis
    • XRP
    • BTC
    • XLM
    • ADA
    • TETHER
    • ETC
    • ETH
    • DOGE
    • LTC
  • Exchange
  • Mining
Thursday, September 11, 2025
  • Login
  • Register
Coin24h.com
  • Home
  • Cryptocurrency
    • Bitcoin
    • Ethereum
    • XRP
    • Litecoin
    • Altcoin
    • Cardano
    • Tether
    • DOGE
    • Solano
    • XLM
    • DOT
    • XDC
    • SHIBA
    • BNB
    • Ape
    • HBAR
    • QNT
  • Blockchain
  • Regulation
  • Market
  • Live
    • Prices
    • ICO
  • Meta
    • NFT
  • Technical Analysis
    • XRP
    • BTC
    • XLM
    • ADA
    • TETHER
    • ETC
    • ETH
    • DOGE
    • LTC
  • Exchange
  • Mining
No Result
View All Result
  • Home
  • Cryptocurrency
    • Bitcoin
    • Ethereum
    • XRP
    • Litecoin
    • Altcoin
    • Cardano
    • Tether
    • DOGE
    • Solano
    • XLM
    • DOT
    • XDC
    • SHIBA
    • BNB
    • Ape
    • HBAR
    • QNT
  • Blockchain
  • Regulation
  • Market
  • Live
    • Prices
    • ICO
  • Meta
    • NFT
  • Technical Analysis
    • XRP
    • BTC
    • XLM
    • ADA
    • TETHER
    • ETC
    • ETH
    • DOGE
    • LTC
  • Exchange
  • Mining
No Result
View All Result
Coin24h.com
No Result
View All Result
Ledger Nano X - The secure hardware wallet
ADVERTISEMENT

Thermomagnetic properties and its effects on Fisher entropy with Schioberg plus Manning-Rosen potential (SPMRP) using Nikiforov-Uvarov functional analysis (NUFA) and supersymmetric quantum mechanics (SUSYQM) methods

20 May 2023
in HBAR
Reading Time: 13 mins read
A A
0
Thermomagnetic properties and its effects on Fisher entropy with Schioberg plus Manning-Rosen potential (SPMRP) using Nikiforov-Uvarov functional analysis (NUFA) and supersymmetric quantum mechanics (SUSYQM) methods
189
SHARES
1.5k
VIEWS
Share on FacebookShare on Twitter
cryptotrader
ADVERTISEMENT

Related articles

BlockDAG’s CEO and Team Announced: Expected to Surpass Hedera and Polygon with a  Projection

BlockDAG’s CEO and Team Announced: Expected to Surpass Hedera and Polygon with a $1 Projection

30 July 2024
VeChain (VET) And Hedera (HBAR) Triple Red Charts. Rollblock (RBLK) Seems The Summer Sure Money Bet – Times Tabloid

VeChain (VET) And Hedera (HBAR) Triple Red Charts. Rollblock (RBLK) Seems The Summer Sure Money Bet – Times Tabloid

28 July 2024
Cryptohopper
ADVERTISEMENT

The Nikiforov-Uvarov Functional Analysis (NUFA) method recently developed by Ikot et al.52 has been very helpful in providing solutions for exponential type potentials both in relativistic and nonrelativistic wave equations When using this method to solve either the Schrödinger or Klein–Gordon equation, the energy eigen equation is directly presented in a factorized, closed and compact form. This gives the method an edge over other methods. Meanwhile, the NUFA theory involves solving second order Schrödinger-like differential equation through the analytical combination of Nikiforov-Uvarov (NU) method and functional analysis approach53,54,55. NU is applied to solve a second-order differential equation of the form

$$\frac{{d^{2} {\uppsi }\left( {\text{s}} \right)}}{{ds^{2} }} + \frac{{\tilde{\tau }\left( s \right)}}{\sigma \left( s \right)}\frac{{d{\uppsi }\left( {\text{s}} \right)}}{ds} + \frac{{\tilde{\sigma }\left( s \right)}}{{\sigma^{2} \left( s \right)}}\psi \left( s \right) = 0$$

(4)

where \(\sigma (s)\) and \(\widetilde{\sigma }\left(s\right)\) are polynomials at most degree two and \(\widetilde{\tau }(s)\) is a first-degree polynomial. Tezean and Sever56 latter introduced the parametric form of NU method in the form

$$\frac{{d^{2} \psi (s)}}{{ds^{2} }} + \frac{{\alpha_{1} – \alpha_{2} s}}{{s(1 – \alpha_{3} s)}}\frac{{d^{2} \psi (s)}}{{ds^{2} }} + \frac{1}{{s^{2} (1 – \alpha_{3} s)^{2} }}\left[ { – U_{1} s^{2} + U_{2} s – U_{3} } \right]\psi (s) = 0,$$

(5)

where
\(\alpha_{i}\) and \(\xi_{i} (i = 1,2,3)\) are all parameters. The differential Eq. (3) has two singularities which is at \(s \to 0\) and \(s \to \frac{1}{{\alpha_{3} }}\) thus, the wave function can be expressed in the form.

$$\Psi_{n} (s) = s^{\lambda } (1 – \alpha_{3} s)^{v} f(s)$$

(6)

Substituting Eq. (6) into Eq. (5) and simplifying culminate to the following equation,

$$\begin{aligned} s(1 – \alpha_{3} s)\frac{{d^{2} f(s)}}{{ds^{2} }} & + \left[ {\alpha_{1} + 2\lambda – (2\lambda \alpha_{3} + 2v\alpha_{3} + \alpha_{2} )s} \right]\frac{df(s)}{{ds}} \\ & – \alpha_{3} \left( {\lambda + v + \frac{1}{2}\left( {\frac{{\alpha_{2} }}{{\alpha_{3} }} – 1} \right) + \sqrt {\frac{1}{4}\left( {\frac{{\alpha_{2} }}{{\alpha_{3} }} – 1} \right)^{2} + \frac{{U_{1} }}{{\alpha_{3}^{2} }}} } \right)\\&\quad \left( {\lambda + v + \frac{1}{2}\left( {\frac{{\alpha_{2} }}{{\alpha_{3} }} – 1} \right) – \sqrt {\frac{1}{4}\left( {\frac{{\alpha_{2} }}{{\alpha_{3} }} – 1} \right)^{2} + \frac{{U_{1} }}{{\alpha_{3}^{2} }}} } \right)f\left( s \right) \\ & + \left[ {\frac{{\lambda (\lambda – 1) + \alpha_{1} \lambda – U_{3} }}{s} + \frac{{v(v – 1)\alpha_{3} + \alpha_{2} v – \alpha_{1} \alpha_{3} v – \frac{{U_{1} }}{{\alpha_{3} }} + U_{2} – U_{3} \alpha_{3} }}{{\left( {1 – \alpha_{3} s} \right)}}} \right]f\left( s \right) = 0 \\ \end{aligned}$$

(7)

Equation (7) can be reduced to a Guassian- hypergeometric equation if and only if the following functions vanished

$$\lambda \left( {\lambda – 1} \right) + \alpha_{1} \lambda – U_{3} = 0$$

(8)

$$\upsilon \left( {\upsilon – 1} \right)\alpha_{3} + \alpha_{2} \upsilon – \alpha_{1} \alpha_{3} \upsilon – \frac{{U_{1} }}{{\alpha_{3} }} + U_{2} – U_{3} \alpha_{3} = 0.$$

(9)

Applying the condition of Eq. (8) and Eq. (9) into Eq. (7) results into Eq. (10)

$$\begin{aligned} s(1 – \alpha_{3} s) & \frac{{d^{2} f(s)}}{{ds^{2} }}\left[ {\alpha_{1} + 2\lambda – (2\lambda \alpha_{3} + 2v\alpha_{3} + \alpha_{2} )s} \right]\frac{df(s)}{{ds}} \\ & \;\; – \alpha_{3} \left( {\lambda + v + \frac{1}{2}\left( {\frac{{\alpha_{2} }}{{\alpha_{3} }} – 1} \right) + \sqrt {\frac{1}{4}\left( {\frac{{\alpha_{2} }}{{\alpha_{3} }} – 1} \right)^{2} + \frac{{U_{1} }}{{\alpha_{3}^{2} }}} } \right)\\ & \quad\left( {\lambda + v + \frac{1}{2}\left( {\frac{{\alpha_{2} }}{{\alpha_{3} }} – 1} \right) – \sqrt {\frac{1}{4}\left( {\frac{{\alpha_{2} }}{{\alpha_{3} }} – 1} \right)^{2} + \frac{{U_{1} }}{{\alpha_{3}^{2} }}} } \right)f\left( s \right) = 0 \\ \end{aligned}$$

(10)

The solutions of Eqs. (8) and (9) are given as

$$\lambda = \frac{1}{2}\left( {\left( {1 – \alpha_{1} } \right) \pm \sqrt {\left( {1 – \alpha_{1} } \right)^{2} + 4U_{3} } } \right)$$

(11)

$$\upsilon = \frac{1}{{2\alpha_{3} }}\left( {\left( {\alpha_{3} + \alpha_{1} \alpha_{3} – \alpha_{2} } \right) \pm \sqrt {\left( {\alpha_{3} + \alpha_{1} \alpha_{3} – \alpha_{2} } \right)^{2} + 4\left( {\frac{{U_{1} }}{{\alpha_{3} }} + \alpha_{3} U_{3} – U_{2} } \right)} } \right)$$

(12)

Equation (10) is the hypergeometric equation type of the form

$$x\left( {1 – x} \right)\frac{{d^{2} f(s)}}{{ds^{2} }} + \left[ {c – \left( {a + b + 1} \right)x} \right]\frac{df(x)}{{dx}} – \left[ {ab} \right]f(x) = 0$$

(13)

where a, b and c are given as follows:

$$a = \sqrt {\alpha_{3} } \left( {\lambda + v + \frac{1}{2}\left( {\frac{{\alpha_{2} }}{{\alpha_{3} }} – 1} \right) + \sqrt {\frac{1}{4}\left( {\frac{{\alpha_{2} }}{{\alpha_{3} }} – 1} \right)^{2} + \frac{{U_{1} }}{{U_{3}^{2} }}} } \right)$$

(14)

$$b = \sqrt {\alpha_{3} } \left( {\lambda + v + \frac{1}{2}\left( {\frac{{\alpha_{2} }}{{\alpha_{3} }} – 1} \right) – \sqrt {\frac{1}{4}\left( {\frac{{\alpha_{2} }}{{\alpha_{3} }} – 1} \right)^{2} + \frac{{U_{1} }}{{\alpha_{3}^{2} }}} } \right)$$

(15)

$$c = \alpha_{1} + 2\lambda$$

(16)

Setting either a or b equal to a negative integer – n, the hypergeometric function f(s) turns to a polynomial of degree n. Hence, the hypergeometric function f(s) approaches finite in the following quantum condition, i.e.,\(a = – n\) where \(n = 0,1,2,3 \ldots n_{\max }\) or \(b = – n\).

Using the above quantum condition,

$$\sqrt {\alpha_{3} } \left( {\lambda + \upsilon + \frac{1}{2}\left( {\frac{{\alpha_{2} }}{{\alpha_{3} }} – 1} \right) + \sqrt {\frac{1}{4}\left( {\frac{{\alpha_{2} }}{{\alpha_{3} }} – 1} \right)^{2} + \frac{{U_{1} }}{{\alpha_{3}^{2} }}} } \right) = – n$$

(17)

$$\lambda + \upsilon + \frac{1}{2}\left( {\frac{{\alpha_{2} }}{{\alpha_{3} }} – 1} \right) + \frac{n}{{\sqrt {\alpha_{3} } }} = – \sqrt {\frac{1}{4}\left( {\frac{{\alpha_{2} }}{{\alpha_{3} }} – 1} \right)^{2} + \frac{{U_{1} }}{{\alpha_{3}^{2} }}}$$

(18)

By simplifying Eq. (18), the energy eigen equation using NUFA method is given as

$$\lambda^{2} + 2\lambda \left( {\upsilon + \frac{1}{2}\left( {\frac{{\alpha_{2} }}{{\alpha_{3} }} – 1} \right) + \frac{n}{{\sqrt {\alpha_{3} } }}} \right) + \left( {\upsilon + \frac{1}{2}\left( {\frac{{\alpha_{2} }}{{\alpha_{3} }} – 1} \right) + \frac{n}{{\sqrt {\alpha_{3} } }}} \right)^{2} – \frac{1}{4}\left( {\frac{{\alpha_{2} }}{{\alpha_{3} }} – 1} \right)^{2} – \frac{{U_{1} }}{{\alpha_{3}^{2} }} = 0$$

(19)

By substituting Eqs. (9) and (10) into Eq. (6), the corresponding wave equation for the NUFA method as

$$\Psi_{n} (s) = N_{n} S^{{\frac{{\left( {1 – \alpha_{1} } \right) + \sqrt {\left( {\alpha_{1} – 1} \right)^{2} + 4U_{3} } }}{2}}} \left( {1 – \alpha_{3} } \right)^{{\frac{{\left( {\alpha_{3} + \alpha_{1} \alpha_{3} – \alpha_{2} } \right) + \sqrt {\left( {\alpha_{3} + \alpha_{1} \alpha_{3} – \alpha_{2} } \right)^{2} + 4\left( {\frac{{U_{1} }}{{\alpha_{3}^{2} }} + \alpha_{3} U_{3} – U_{2} } \right)} }}{{2\alpha_{2} }}}} {}_{2}F_{1} (a,b,c;s)$$

(20)

Thermomagnetic energy spectra of 2-dimensional Schrödinger equation under the influence Aharanov-Bohm (AB) flux and external magnetic field using NUFA

The thermomagnetic energy spectra of 2-Dimensional Schrödinger equation under the influenced of AB and Magnetic field with SPMR potential can be obtained from charged particle Hamiltonian operator of the form

$$\left\{ {\frac{1}{2\mu }\left( {i\hbar \nabla – \frac{e}{c}\vec{A}} \right)^{2} + D\left[ {1 – \sigma_{0} \left( {\frac{{1 + e^{ – \alpha r} }}{{1 – e^{ – \alpha r} }}} \right)} \right]^{2} – \left( {\frac{{c_{1} e^{ – 2\alpha r} + c_{2} e^{ – \alpha r} }}{{\left( {1 – e^{ – \alpha r} } \right)^{2} }}} \right)} \right\}R\left( {r, \varphi } \right) = E_{nm} R\left( {r, \varphi } \right)$$

(21)

\(E_{nm}\) is the thermomagnetic energy spectra, \(e\) and \(\mu\) represent the charge of the particle and the reduced mass respectively. \(c\) is the speed of light. Meanwhile, The vector potential \(\overrightarrow{A}=\left({A}_{r},{A}_{\phi }, {A}_{z}\right)\) can be written as the superposition of two terms such that \(\overrightarrow{A}=\overrightarrow{{A}_{1}}+\overrightarrow{{A}_{2}}\) is the vector potential with azimuthal components such that \(\overrightarrow{{A}_{1}}=\) and \(\overrightarrow{{A}_{2}}=\), corresponding to the extra magnetic flux \(\Phi_{AB}\) generated by a solenoid with \(\overrightarrow{\nabla }.\overrightarrow{{A}_{2}}=0\) and \(\overrightarrow{B}\) is the magnetic vector field accompanied by \(\overrightarrow{\nabla }\times \overrightarrow{{A}_{1}}=\overrightarrow{B}\) ,\(\overrightarrow{\nabla }\times \overrightarrow{{A}_{2}}=0\). The vector potential \(\overrightarrow{A}\) can then be expressed as

$$\vec{A} = \left( {0,\frac{{Be^{ – \alpha r} \hat{\varphi }}}{{1 – e^{ – \alpha r} }} + \frac{{\Phi_{AB} }}{2\pi r}\hat{\varphi },0} \right) = \left( {\frac{{Be^{ – \alpha r} \hat{\varphi }}}{{1 – e^{ – \alpha r} }} + \frac{{\Phi_{AB} }}{2\pi r}\hat{\varphi }} \right)$$

(22)

The Laplacian operator and the wave function in cylindrical coordinate is given as

$$\begin{aligned} \nabla^{2} & = \frac{{\partial^{2} }}{{\partial r^{2} }} + \frac{1}{r}\frac{\partial }{\partial r} + \frac{1}{{r^{2} }}\frac{{\partial^{2} }}{{\partial \varphi^{2} }} + \frac{{\partial^{2} }}{{\partial z^{2} }} \\ \Psi \left( {r,\varphi } \right) & = \frac{1}{{\sqrt {2\pi r} }}R_{nm} (r)e^{im\varphi } \\ \end{aligned}$$

(23)

where \(m\) represents the magnetic quantum number. Substituting Eqs. (23) and (22) into Eq. (21) and with much algebraic simplification gives rise to the Schrödinger -like equation of the form

$$\frac{{d^{2} R_{nm} (r)}}{{dr^{2} }} + \frac{2\mu }{{h^{2} }}\left[ \begin{gathered} E_{nm} – D\left[ {1 – \sigma_{0} \left( {\frac{{1 + e^{ – \alpha r} }}{{1 – e^{ – \alpha r} }}} \right)} \right]^{2} + \left( {\frac{{c_{1} e^{ – 2\alpha r} + c_{2} e^{ – \alpha r} }}{{\left( {1 – e^{ – \alpha r} } \right)^{2} }}} \right) – \hbar \omega_{c} \left( {m + \xi } \right)\frac{{e^{ – \alpha r} }}{{\left( {1 – e^{ – \alpha r} } \right)r}} \hfill \\ – \left( {\frac{{\mu \omega_{c}^{2} }}{2}} \right)\frac{{e^{ – 2\alpha r} }}{{\left( {1 – e^{ – \alpha r} } \right)^{2} }} – \frac{{\hbar^{2} }}{2\mu }\left( {\frac{{\left( {m + \xi } \right)^{2} – \frac{1}{4}}}{{r^{2} }}} \right) \hfill \\ \end{gathered} \right]R_{nm} (r) = 0.$$

(24)

where \(\xi = \frac{{\Phi_{AB} }}{{\phi_{0} }}\) is an absolute value containing the flux quantum \(\phi_{0} = \frac{hc}{e}\). The cyclotron frequency is represented by \(\omega_{c} = \frac{{e\vec{B}}}{\mu c}\). Equation (24) is not exactly solvable due to the presence of centrifugal barrier \(\frac{1}{{r^{2} }}\). In order to provide an analytical approximate solution to Eq. (24), we substitute the modified Greene-Aldrich approximation of the form \(\frac{1}{{r^{2} }} = \frac{{\alpha^{2} }}{{\left( {1 – e^{ – \alpha r} } \right)^{2} }}\) into Eq. (24) to deal with the centrifugal barrier. Also, using the coordinate transformation \(s = e^{ – \alpha r}\) together with the approximation term, Eq. (24) reduced to the hyper-geometric equation of the form

$$\frac{{d^{2} R_{nm} (s)}}{{ds^{2} }} + \frac{{\left( {1 – s} \right)}}{{s\left( {1 – s} \right)}}\frac{{dR_{nm} (s)}}{ds} + \frac{1}{{s^{2} \left( {1 – s} \right)^{2} }}\left\{ \begin{gathered} – \left( {\varepsilon^{2} + \chi_{1} + 2\chi_{1} \sigma_{0} + \chi_{1} \sigma_{0}^{2} – \chi_{2} + \chi_{5} } \right)s^{2} \hfill \\ + \left( {2\varepsilon^{2} + 2\chi_{1} – 2\chi_{1} \sigma_{0}^{2} + \chi_{3} – \chi_{4} } \right)s \hfill \\ – \left( {\varepsilon^{2} + \chi_{1} – 2\chi_{1} \sigma_{0} + \chi_{1} \sigma_{0}^{2} + \chi_{6} } \right) \hfill \\ \end{gathered} \right\}R_{nm} (s) = 0.$$

(25)

where

$$\begin{aligned} \varepsilon^{2} & = – \frac{{2\mu E_{nm} }}{{\hbar^{2} \alpha^{2} }}\begin{array}{*{20}c} , & {\chi_{1} = \frac{2\mu D}{{\hbar^{2} \alpha^{2} }}} \\ \end{array} \begin{array}{*{20}c} , & {\chi_{2} = \frac{{2\mu c_{1} }}{{\hbar^{2} \alpha^{2} }}} \\ \end{array} \begin{array}{*{20}c} , & {\chi_{3} = \frac{{2\mu c_{2} }}{{\hbar^{2} \alpha^{2} }}} \\ \end{array} \\ \chi_{4} & = \frac{{2\mu \omega_{c} \left( {m + \xi } \right)}}{\hbar \alpha }\begin{array}{*{20}c} , & {\chi_{5} = \frac{{\mu^{2} \omega_{c}^{2} }}{{\hbar^{2} \alpha^{2} }}} \\ \end{array} \begin{array}{*{20}c} , & {\chi_{6} = \left( {m + \xi } \right)^{2} – \frac{1}{4}} \\ \end{array} . \\ \end{aligned}$$

(26)

Comparing Eq. (25) with NUFA differential equation in Eq. (5), the following polynomial equations can be obtained.

$$\begin{gathered} U_{1} = \left( {\varepsilon^{2} + \chi_{1} + 2\chi_{1} \sigma_{0} + \chi_{1} \sigma_{0}^{2} – \chi_{2} + \chi_{5} } \right)\begin{array}{*{20}c} , & {U_{2} = \left( {2\varepsilon^{2} + 2\chi_{1} – 2\chi_{1} \sigma_{0}^{2} + \chi_{3} – \chi_{4} } \right)} \\ \end{array} \hfill \\ U_{3} = \left( {\varepsilon^{2} + \chi_{1} – 2\chi_{1} \sigma_{0} + \chi_{1} \sigma_{0}^{2} + \chi_{6} } \right),\alpha_{1} = \alpha_{2} = \alpha_{3} = 1. \hfill \\ \end{gathered}$$

(27)

Using equation NUFA in Eqs. (11), (12), (14), (15) and (16) the following polynomial equations can be obtained

$$\lambda = \sqrt {\varepsilon^{2} + \chi_{1} – 2\chi_{1} \sigma_{0} + \chi_{1} \sigma_{0}^{2} + \chi_{6} } ,$$

(28)

$$\upsilon = \frac{1}{2} + \frac{1}{2}\sqrt {16\chi_{1} \sigma_{0}^{2} – 4\chi_{2} + 4\chi_{5} + 4\chi_{6} – 4\chi_{3} + 4\chi_{4} + 1} ,$$

(29)

$$a = \left( \begin{gathered} \sqrt {\varepsilon^{2} + \chi_{1} – 2\chi_{1} \sigma_{0} + \chi_{1} \sigma_{0}^{2} + \chi_{6} } + \frac{1}{2} + \frac{1}{2}\sqrt {16\chi_{1} \sigma_{0}^{2} – 4\chi_{2} + 4\chi_{5} + 4\chi_{6} – 4\chi_{3} + 4\chi_{4} + 1} \hfill \\ + \sqrt {\varepsilon^{2} + \chi_{1} + 2\chi_{1} \sigma_{0} + \chi_{1} \sigma_{0}^{2} – \chi_{2} + \chi_{5} } \hfill \\ \end{gathered} \right),$$

(30)

$$b = \left( \begin{gathered} \sqrt {\varepsilon^{2} + \chi_{1} – 2\chi_{1} \sigma_{0} + \chi_{1} \sigma_{0}^{2} + \chi_{6} } + \frac{1}{2} + \frac{1}{2}\sqrt {16\chi_{1} \sigma_{0}^{2} – 4\chi_{2} + 4\chi_{5} + 4\chi_{6} – 4\chi_{3} + 4\chi_{4} + 1} \hfill \\ – \sqrt {\varepsilon^{2} + \chi_{1} + 2\chi_{1} \sigma_{0} + \chi_{1} \sigma_{0}^{2} – \chi_{2} + \chi_{5} } \hfill \\ \end{gathered} \right),$$

(31)

$$c = \left( {1 + 2\sqrt {\varepsilon^{2} + \chi_{1} – 2\chi_{1} \sigma_{0} + \chi_{1} \sigma_{0}^{2} + \chi_{6} } } \right).$$

(32)

using Eq. (19), the thermo-magnetic energy eigen equation

$$\begin{aligned} \varepsilon^{2} & = \frac{1}{4}\left\{ {\frac{{\left( {n + \frac{1}{2} + \frac{1}{2}\sqrt {16\chi_{1} \sigma_{0}^{2} – 4\chi_{2} + 4\chi_{5} + 4\chi_{6} – 4\chi_{3} + 4\chi_{4} + 1} } \right)^{2} + \chi_{2} – \chi_{5} + \chi_{6} – 4\chi_{1} \sigma_{0} }}{{\left( {n + \frac{1}{2} + \frac{1}{2}\sqrt {16\chi_{1} \sigma_{0}^{2} – 4\chi_{2} + 4\chi_{5} + 4\chi_{6} – 4\chi_{3} + 4\chi_{4} + 1} } \right)}}} \right\}^{2} \\ & \;\;\; + 2\chi_{1} \sigma_{0} – \chi_{1} – \chi_{1} \sigma_{0}^{2} – \chi_{6} \\ \end{aligned}$$

(33)

Substituting the parameters of Eq. (26) into Eq. (33), the thermomagnetic energy equation become

$$\begin{aligned} E_{nm} & = \frac{{h^{2} \alpha^{2} }}{2\mu }\left( {\left( {m + \xi } \right)^{2} – \frac{1}{4}} \right) + D\left( {\sigma_{0} – 1} \right)^{2} \\ & \;\;\; – \frac{{h^{2} \alpha^{2} }}{8\mu }\left\{ {\frac{\begin{gathered} \left[ {n + \frac{1}{2} + \frac{1}{2}\sqrt {\frac{{32\mu D\sigma_{0}^{2} }}{{h^{2} \alpha^{2} }} – \frac{{8\mu c_{1} }}{{h^{2} \alpha^{2} }} – \frac{{8\mu c_{2} }}{{h^{2} \alpha^{2} }} + \frac{{4\mu^{2} \omega_{c}^{2} }}{{h^{2} \alpha^{2} }} + 4\left( {m + \xi } \right)^{2} + \frac{{8\mu \omega_{c} }}{h\alpha }\left( {m + \xi } \right)} } \right]^{2} \hfill \\ + \frac{{2\mu c_{1} }}{{h^{2} \alpha^{2} }} – \frac{{\mu^{2} \omega_{c}^{2} }}{{h^{2} \alpha^{2} }} – \frac{{8\mu D\sigma_{0} }}{{h^{2} \alpha^{2} }} + \left( {m + \xi } \right)^{2} – \frac{1}{4} \hfill \\ \end{gathered} }{{\left[ {n + \frac{1}{2} + \frac{1}{2}\sqrt {\frac{{32\mu D\sigma_{0}^{2} }}{{h^{2} \alpha^{2} }} – \frac{{8\mu c_{1} }}{{h^{2} \alpha^{2} }} – \frac{{8\mu c_{2} }}{{h^{2} \alpha^{2} }} + \frac{{4\mu^{2} \omega_{c}^{2} }}{{h^{2} \alpha^{2} }} + 4\left( {m + \xi } \right)^{2} + \frac{{8\mu \omega_{c} }}{h\alpha }\left( {m + \xi } \right)} } \right]}}} \right\}^{2} \\ \end{aligned}$$

(34)

The 2D nonrelativistic energy eigen equation can be obtained with the condition that \(\omega_{c} = \xi = 0\), \(m = l + \frac{1}{2}\).

Then Eq. (34) become

$$\begin{aligned} E_{nm} & = \frac{{h^{2} \alpha^{2} l\left( {l + 1} \right)}}{2\mu } + D\left( {\sigma_{0} – 1} \right)^{2} \\ & \;\;\; – \frac{{h^{2} \alpha^{2} }}{8\mu }\left\{ {\frac{{\left[ {n + \frac{1}{2} + \frac{1}{2}\sqrt {1 + \frac{{32\mu D\sigma_{0}^{2} }}{{h^{2} \alpha^{2} }} – \frac{{8\mu c_{1} }}{{h^{2} \alpha^{2} }} – \frac{{8\mu c_{2} }}{{h^{2} \alpha^{2} }} + 4l\left( {l + 1} \right)} } \right]^{2} + \frac{{2\mu c_{1} }}{{h^{2} \alpha^{2} }} – \frac{{8\mu D\sigma_{0} }}{{h^{2} \alpha^{2} }} + l\left( {l + 1} \right)}}{{\left[ {n + \frac{1}{2} + \frac{1}{2}\sqrt {1 + \frac{{32\mu D\sigma_{0}^{2} }}{{h^{2} \alpha^{2} }} – \frac{{8\mu c_{1} }}{{h^{2} \alpha^{2} }} – \frac{{8\mu c_{2} }}{{h^{2} \alpha^{2} }} + 4l\left( {l + 1} \right)} } \right]}}} \right\}^{2} \\ \end{aligned}$$

(34a)

Special cases

Schioberg potential

Substituting \(c_{1} = c_{2} = 0\).into Eq. (3), then, the potential reduces to Schioberg potential given as

$$V\left( r \right) = D\left[ {1 – \sigma_{0} \left( {\frac{{1 + e^{ – \alpha r} }}{{1 – e^{ – \alpha r} }}} \right)} \right]^{2} .$$

(34b)

Substituting the same condition to Eq. (34) gives the energy-eigen equation for Schioberg potential under the influence of magnetic and AB field as

$$\begin{aligned} E_{nm} & = \frac{{h^{2} \alpha^{2} }}{2\mu }\left( {\left( {m + \xi } \right)^{2} – \frac{1}{4}} \right) + D\left( {\sigma_{0} – 1} \right)^{2} \\ & \;\;\; – \frac{{h^{2} \alpha^{2} }}{8\mu }\left\{ {\frac{{\left[ {n + \frac{1}{2} + \frac{1}{2}\sqrt {\frac{{32\mu D\sigma_{0}^{2} }}{{h^{2} \alpha^{2} }} + \frac{{4\mu^{2} \omega_{c}^{2} }}{{h^{2} \alpha^{2} }} + 4\left( {m + \xi } \right)^{2} + \frac{{8\mu \omega_{c} }}{h\alpha }\left( {m + \xi } \right)} } \right]^{2} – \frac{{\mu^{2} \omega_{c}^{2} }}{{h^{2} \alpha^{2} }} – \frac{{8\mu D\sigma_{0} }}{{h^{2} \alpha^{2} }} + \left( {m + \xi } \right)^{2} – \frac{1}{4}}}{{\left[ {n + \frac{1}{2} + \frac{1}{2}\sqrt {\frac{{32\mu D\sigma_{0}^{2} }}{{h^{2} \alpha^{2} }} + \frac{{4\mu^{2} \omega_{c}^{2} }}{{h^{2} \alpha^{2} }} + 4\left( {m + \xi } \right)^{2} + \frac{{8\mu \omega_{c} }}{h\alpha }\left( {m + \xi } \right)} } \right]}}} \right\}^{2} \\ \end{aligned}$$

(34c)

Manning-Rosen potential

Substituting \(D = 0\) into Eq. (3), then the potential reduces to Manning-Rosen potential of the form

$$V\left( r \right) = – \left( {\frac{{c_{1} e^{ – 2\alpha r} + c_{2} e^{ – \alpha r} }}{{\left( {1 – e^{ – \alpha r} } \right)^{2} }}} \right)$$

(34d)

Substituting the same condition to Eq. (34) gives the energy eigen equation of Manning-Rosen potential under the influence of magnetic and AB fields as

$$\begin{aligned} E_{nm} & = \frac{{h^{2} \alpha^{2} }}{2\mu }\left( {\left( {m + \xi } \right)^{2} – \frac{1}{4}} \right) \\ & \;\;\; – \frac{{h^{2} \alpha^{2} }}{8\mu }\left\{ {\frac{{\left[ {n + \frac{1}{2} + \frac{1}{2}\sqrt { – \frac{{8\mu c_{1} }}{{h^{2} \alpha^{2} }} – \frac{{8\mu c_{2} }}{{h^{2} \alpha^{2} }} + \frac{{4\mu^{2} \omega_{c}^{2} }}{{h^{2} \alpha^{2} }} + 4\left( {m + \xi } \right)^{2} + \frac{{8\mu \omega_{c} }}{h\alpha }\left( {m + \xi } \right)} } \right]^{2} + \frac{{2\mu c_{1} }}{{h^{2} \alpha^{2} }} – \frac{{\mu^{2} \omega_{c}^{2} }}{{h^{2} \alpha^{2} }} + \left( {m + \xi } \right)^{2} – \frac{1}{4}}}{{\left[ {n + \frac{1}{2} + \frac{1}{2}\sqrt { – \frac{{8\mu c_{1} }}{{h^{2} \alpha^{2} }} – \frac{{8\mu c_{2} }}{{h^{2} \alpha^{2} }} + \frac{{4\mu^{2} \omega_{c}^{2} }}{{h^{2} \alpha^{2} }} + 4\left( {m + \xi } \right)^{2} + \frac{{8\mu \omega_{c} }}{h\alpha }\left( {m + \xi } \right)} } \right]}}} \right\}^{2} \\ \end{aligned}$$

(35)

Using Eq. (20), the wave function can be presented in a factorized form as

$$\Psi_{nm} (s) = N_{n} S^{\beta } \left( {1 – s} \right)^{{\eta + \frac{1}{2}}} F_{1} \left( {a,b,c;s} \right)$$

(36)

where

$$\begin{gathered} \beta = \sqrt {\frac{2\mu D}{{h^{2} \alpha^{2} }} – \frac{{2\mu E_{nm} }}{{h^{2} \alpha^{2} }} – \frac{{4\mu D\sigma_{0} }}{{h^{2} \alpha^{2} }} + \frac{{2\mu D\sigma_{0}^{2} }}{{h^{2} \alpha^{2} }} + \left( {m + \xi } \right)^{2} – \frac{1}{4}} \hfill \\ \eta = \sqrt {\frac{{8\mu D\sigma_{0}^{2} }}{{h^{2} \alpha^{2} }} – \frac{{2\mu c_{1} }}{{h^{2} \alpha^{2} }} – \frac{{2\mu c_{2} }}{{h^{2} \alpha^{2} }} + \left( {m + \xi + \frac{{\mu \omega_{c} }}{h\alpha }} \right)^{2} } \hfill \\ \end{gathered}$$

(37)

Equation (36) can be expressed in terms of Jacobi polynomial as

$$\Psi_{nm} (s) = N_{n} S^{\beta } \left( {1 – s} \right)^{{\eta + \frac{1}{2}}} P_{n}^{{\left( {2\beta ,2\eta } \right)}} (1 – 2s)$$

(38)

Equation (38) can be normalized using the expression

$$\begin{gathered} \int\limits_{0}^{\infty } {\left| {\Psi_{nm} (s)} \right|^{2} } dr = 1 \hfill \\ \Rightarrow N_{nl}^{2} \int\limits_{0}^{\infty } {(e^{ – \alpha r} )^{2\beta } (1 – e^{ – \alpha r} )^{2\eta + 1} \left| {P_{n}^{{\left( {2\beta ,2\eta } \right)}} \left( {1 – 2e^{ – \alpha r} } \right)} \right|^{2} dr} = 1 \hfill \\ \end{gathered}$$

(39)

Using Mathematica 10.0 version, the normalized wave function for ground states, first excited state, second excited state and third excited quantum state can be obtained as follows:

$$\Psi_{0,m} (r) = \sqrt {\frac{{\alpha \Gamma \left( {2\beta + 2\eta + 2} \right)}}{{\Gamma \left( {2\beta } \right)\Gamma \left( {2 + 2\eta } \right)}}} \left( {e^{ – \alpha r} } \right)^{\beta } \left( {1 – e^{ – \alpha r} } \right)^{{\eta + \frac{1}{2}}}$$

(40)

$$\Psi_{1,m} (r) = \sqrt {\frac{{2\alpha \beta \Gamma \left( {3 + 2\beta + 2\eta } \right)\Gamma \left( {2\beta + 2\eta + 2} \right)}}{{\Gamma \left( {3 + 2\eta } \right)\Gamma \left( {2\beta } \right)\Gamma \left( {2 + 2\eta } \right)}}} \left( {e^{ – \alpha r} } \right)^{\beta } \left( {1 – e^{ – \alpha r} } \right)^{{\eta + \frac{1}{2}}} P_{1}^{{\left( {2\beta ,2\eta } \right)}} \left( {1 – 2e^{ – \alpha r} } \right)$$

(41)

$$\Psi_{2,m} (r) = \sqrt {\frac{{4\alpha \beta \Gamma \left( {5 + 2\beta + 2\eta } \right)\Gamma \left( {2\beta + 2\eta + 3} \right)}}{{\Gamma \left( {5 + 2\eta } \right)\Gamma \left( {3 + 2\beta } \right)\Gamma \left( {3 + 2\eta } \right)}}} \left( {e^{ – \alpha r} } \right)^{\beta } \left( {1 – e^{ – \alpha r} } \right)^{{\eta + \frac{1}{2}}} P_{2}^{{\left( {2\beta ,2\eta } \right)}} \left( {1 – 2e^{ – \alpha r} } \right)$$

(42)

$$\Psi_{3,m} (r) = \sqrt {\frac{{12\alpha \beta \Gamma \left( {7 + 2\beta + 2\eta } \right)\Gamma \left( {2\beta + 2\eta + 4} \right)}}{{\Gamma \left( {7 + 2\eta } \right)\Gamma \left( {4 + 2\beta } \right)\Gamma \left( {4 + 2\eta } \right)}}} \left( {e^{ – \alpha r} } \right)^{\beta } \left( {1 – e^{ – \alpha r} } \right)^{{\eta + \frac{1}{2}}} P_{3}^{{\left( {2\beta ,2\eta } \right)}} \left( {1 – 2e^{ – \alpha r} } \right)$$

(43)

Source link

[crypto-donation-box]
Tags: AnalysisEffectsentropyFisherFunctionalManningRosenMechanicsMethodsNikiforovUvarovNUFAPotentialPropertiesQuantumSchiobergSPMRPsupersymmetricSUSYQMThermomagnetic
Share76Tweet47
Ledger Nano X - The secure hardware wallet
Previous Post

As XRP SEC case nears conclusion, what will be its effects on the industry?

Next Post

Will Solana Price Break $30?

Related Posts

BlockDAG’s CEO and Team Announced: Expected to Surpass Hedera and Polygon with a  Projection

BlockDAG’s CEO and Team Announced: Expected to Surpass Hedera and Polygon with a $1 Projection

30 July 2024
0

In the latest Hedera (HBAR) update, the integration of Blade, a self-custody Web3 wallet, demonstrates Hedera’s commitment to simplifying digital...

VeChain (VET) And Hedera (HBAR) Triple Red Charts. Rollblock (RBLK) Seems The Summer Sure Money Bet – Times Tabloid

VeChain (VET) And Hedera (HBAR) Triple Red Charts. Rollblock (RBLK) Seems The Summer Sure Money Bet – Times Tabloid

28 July 2024
0

VeChain and Hedera have been in freefall since the start of the March correction. Despite both being fundamentally solid projects...

400,000 New Hedera Accounts in One Week: Blade Wallet in

400,000 New Hedera Accounts in One Week: Blade Wallet in

25 July 2024
0

Hedera Network is growing with a massive 400,000 new accounts bagged in one week. The network is looking to serve...

Why Whales Are Betting Big on WW3Shiba and Shifting from Dogecoin!

Why Whales Are Betting Big on WW3Shiba and Shifting from Dogecoin!

24 July 2024
0

Hedera (HBAR) is capitalizing on its innovative technology to challenge Bitcoin's (BTC) legacy. Bitcoin continues to shrug off challenges from...

This New Crypto Presale Has Gone Viral In July As HBAR and FIL Holders Are Lured By 100x Potential

This New Crypto Presale Has Gone Viral In July As HBAR and FIL Holders Are Lured By 100x Potential

22 July 2024
0

As Bitcoin climbs to its all-time high, investors holding altcoins like Hedera (HBAR) and Filecoin (FIL) are considering new tokens...

Load More
Next Post
Will Solana Price Break ?

Will Solana Price Break $30?

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Plugin Install : Widget Tab Post needs JNews - View Counter to be installed
  • Trending
  • Comments
  • Latest
78,229 Ethereum Leaves Kraken As 4 New Wallets Move ETH: Institutional Accumulation?

78,229 Ethereum Leaves Kraken As 4 New Wallets Move ETH: Institutional Accumulation?

11 September 2025
ETH Mining, ADA Mining, And BNB Mining- Cloud Mining Opportunities At Hashj – BlockchainReporter

ETH Mining, ADA Mining, And BNB Mining- Cloud Mining Opportunities At Hashj – BlockchainReporter

11 September 2025
Why New Crypto Investors Are Betting Big On Remittix Over Solana In September

Why New Crypto Investors Are Betting Big On Remittix Over Solana In September

11 September 2025
Ethereum Investors Double Down As Staking Activity Spikes Sharply – Here’s How Much

Ethereum Investors Double Down As Staking Activity Spikes Sharply – Here’s How Much

11 September 2025

About Us

We publish a comprehensive news feed covering all news relevant to the crypto user, covering main industry news, politics and regulation as well as consumer-level “news you can use” (practical stuff), including handy DIY tips, links to useful tools, unbiased reviews and opinions revolving around cryptocurrency. Simple logic and real-world examples are preferred before technical jargon and personal rants.

Categories

  • Altcoin
  • ApeCoin
  • Bitcoin
  • Blockchain
  • BNB
  • Cardano
  • Cryptocurrency
  • DOGE
  • DOT
  • Ethereum
  • HBAR
  • Litecoin
  • Market
  • Meta News
  • Mining
  • NFT
  • QNT
  • Regulation
  • SHIBA
  • Solano
  • Tether
  • Uncategorized
  • XDC
  • XLM
  • XRP

What’s New Here!

  • 78,229 Ethereum Leaves Kraken As 4 New Wallets Move ETH: Institutional Accumulation?
  • ETH Mining, ADA Mining, And BNB Mining- Cloud Mining Opportunities At Hashj – BlockchainReporter
  • Why New Crypto Investors Are Betting Big On Remittix Over Solana In September
  • Ethereum Investors Double Down As Staking Activity Spikes Sharply – Here’s How Much
  • Solana Treasury News: Forward (FORD) Closes $1.65B PIPE Deal Led by Galaxy, Jump Crypto, Multicoin – CoinDesk

Subscribe Now

Our Partner

Round Main Logo
  • About Us
  • Privacy Policy
  • Contact Us

© 2022-2025 coin24h.com

No Result
View All Result
  • Home
  • Cryptocurrency
    • Bitcoin
    • Ethereum
    • XRP
    • Litecoin
    • Altcoin
    • Cardano
    • Tether
    • DOGE
    • Solano
    • XLM
    • DOT
    • XDC
    • SHIBA
    • BNB
    • Ape
    • HBAR
    • QNT
  • Blockchain
  • Regulation
  • Market
  • Live
    • Prices
    • ICO
  • Meta
    • NFT
  • Technical Analysis
    • XRP
    • BTC
    • XLM
    • ADA
    • TETHER
    • ETC
    • ETH
    • DOGE
    • LTC
  • Exchange
  • Mining

© 2020 coin24h.com

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In
  • bitcoinBitcoin (BTC) $ 114,532.00
  • ethereumEthereum (ETH) $ 4,433.43
  • xrpXRP (XRP) $ 3.02
  • tetherTether (USDT) $ 1.00
  • bnbBNB (BNB) $ 897.48
  • solanaSolana (SOL) $ 227.48
  • usd-coinUSDC (USDC) $ 0.999817
  • staked-etherLido Staked Ether (STETH) $ 4,426.93
  • dogecoinDogecoin (DOGE) $ 0.249874
  • tronTRON (TRX) $ 0.345515
  • cardanoCardano (ADA) $ 0.882359
  • wrapped-stethWrapped stETH (WSTETH) $ 5,370.99
  • chainlinkChainlink (LINK) $ 23.74
  • wrapped-beacon-ethWrapped Beacon ETH (WBETH) $ 4,778.21
  • hyperliquidHyperliquid (HYPE) $ 55.01
  • wrapped-bitcoinWrapped Bitcoin (WBTC) $ 114,651.00
  • ethena-usdeEthena USDe (USDE) $ 1.00
  • suiSui (SUI) $ 3.60
  • figure-helocFigure Heloc (FIGR_HELOC) $ 0.998883
  • stellarStellar (XLM) $ 0.388442
  • avalanche-2Avalanche (AVAX) $ 29.06
  • wrapped-eethWrapped eETH (WEETH) $ 4,766.21
  • bitcoin-cashBitcoin Cash (BCH) $ 589.87
  • wethWETH (WETH) $ 4,435.16
  • hedera-hashgraphHedera (HBAR) $ 0.235264
  • leo-tokenLEO Token (LEO) $ 9.56
  • crypto-com-chainCronos (CRO) $ 0.261695
  • litecoinLitecoin (LTC) $ 114.69
  • the-open-networkToncoin (TON) $ 3.19
  • usdsUSDS (USDS) $ 0.999810
  • shiba-inuShiba Inu (SHIB) $ 0.000013
  • binance-bridged-usdt-bnb-smart-chainBinance Bridged USDT (BNB Smart Chain) (BSC-USD) $ 0.999827
  • coinbase-wrapped-btcCoinbase Wrapped BTC (CBBTC) $ 114,576.00
  • polkadotPolkadot (DOT) $ 4.19
  • whitebitWhiteBIT Coin (WBT) $ 43.54
  • uniswapUniswap (UNI) $ 9.82
  • ethena-staked-usdeEthena Staked USDe (SUSDE) $ 1.20
  • world-liberty-financialWorld Liberty Financial (WLFI) $ 0.199062
  • ethenaEthena (ENA) $ 0.769305
  • mantleMantle (MNT) $ 1.61
  • moneroMonero (XMR) $ 270.87
  • aaveAave (AAVE) $ 303.96
  • bitget-tokenBitget Token (BGB) $ 4.91
  • daiDai (DAI) $ 0.999655
  • pepePepe (PEPE) $ 0.000011
  • okbOKB (OKB) $ 194.94
  • bittensorBittensor (TAO) $ 357.83
  • nearNEAR Protocol (NEAR) $ 2.71
  • jito-staked-solJito Staked SOL (JITOSOL) $ 279.84
  • worldcoin-wldWorldcoin (WLD) $ 1.63