• Home
  • Cryptocurrency
    • Bitcoin
    • Ethereum
    • XRP
    • Litecoin
    • Altcoin
    • Cardano
    • Tether
    • DOGE
    • Solano
    • XLM
    • DOT
    • XDC
    • SHIBA
    • BNB
    • Ape
    • HBAR
    • QNT
  • Blockchain
  • Regulation
  • Market
  • Live
    • Prices
    • ICO
  • Meta
    • NFT
  • Technical Analysis
    • XRP
    • BTC
    • XLM
    • ADA
    • TETHER
    • ETC
    • ETH
    • DOGE
    • LTC
  • Exchange
  • Mining
Thursday, September 11, 2025
  • Login
  • Register
Coin24h.com
  • Home
  • Cryptocurrency
    • Bitcoin
    • Ethereum
    • XRP
    • Litecoin
    • Altcoin
    • Cardano
    • Tether
    • DOGE
    • Solano
    • XLM
    • DOT
    • XDC
    • SHIBA
    • BNB
    • Ape
    • HBAR
    • QNT
  • Blockchain
  • Regulation
  • Market
  • Live
    • Prices
    • ICO
  • Meta
    • NFT
  • Technical Analysis
    • XRP
    • BTC
    • XLM
    • ADA
    • TETHER
    • ETC
    • ETH
    • DOGE
    • LTC
  • Exchange
  • Mining
No Result
View All Result
  • Home
  • Cryptocurrency
    • Bitcoin
    • Ethereum
    • XRP
    • Litecoin
    • Altcoin
    • Cardano
    • Tether
    • DOGE
    • Solano
    • XLM
    • DOT
    • XDC
    • SHIBA
    • BNB
    • Ape
    • HBAR
    • QNT
  • Blockchain
  • Regulation
  • Market
  • Live
    • Prices
    • ICO
  • Meta
    • NFT
  • Technical Analysis
    • XRP
    • BTC
    • XLM
    • ADA
    • TETHER
    • ETC
    • ETH
    • DOGE
    • LTC
  • Exchange
  • Mining
No Result
View All Result
Coin24h.com
No Result
View All Result
Ledger Nano X - The secure hardware wallet
ADVERTISEMENT

Beyond 5 GHz excitation of a ZnO-based high-overtone bulk acoustic resonator on SiC substrate

16 August 2023
in HBAR
Reading Time: 8 mins read
A A
0
Beyond 5 GHz excitation of a ZnO-based high-overtone bulk acoustic resonator on SiC substrate
189
SHARES
1.5k
VIEWS
Share on FacebookShare on Twitter
cryptotrader
ADVERTISEMENT

Crystal structure and morphology of ZnO films

A 650 ± 20 nm thick ZnO piezoelectric film was grown on the Pt/Ti-coated Si and SiC substrate using the RF sputtering method. The structural properties of the synthesized ZnO film on the Pt/Ti coated oxidized Si and SiC substrates were investigated using high-resolution X-ray diffraction (HRXRD, M/s. Rigaku, Japan), and the results are shown in Fig. 1. ZnO layers deposited on Pt/Ti/SiC exhibit a stronger (0002) orientation as compared to ZnO deposited on an oxidized Si substrate with a Pt/Ti coating. The (0002) rocking curve for ZnO on SiC is depicted in the inset of Fig. 1, with a full width at half maximum (FWHM) of 2.45\(^\circ\). This outcome is consistent with the cross-sectional field-emission scanning electron microscope (SEM, M/s. Carl Zeiss, Germany) observation at 3 kV operating voltages, as shown in Fig. 2a,b. On the SiC substrate, ZnO is shown to have a much better columnar microstructure normal to the substrate surface than on the Si substrate. The surface morphology was measured using atomic force microscopy (AFM, Asylum Research, M/s. Oxford Instruments, UK) with a non-contact cantilever single-crystal silicon tip of size 10 nm in the tapping mode, and a representative result for ZnO/Pt/Ti/SiC is displayed in Fig. 2c. The ZnO films exhibit RMS surface roughness of 9.7 ± 0.3 nm and 4.9 ± 0.2 nm for ZnO/Pt/Ti/Si and ZnO/Pt/Ti/SiC, respectively.

Figure 1

The XRD profile of ZnO films on Pt/Ti/\(SiO_2\)/Si and Pt/Ti/SiC substrate and (inset) rocking curve of (0002) peak of ZnO film on Pt/Ti/SiC substrate.

Figure 2
figure 2

SEM cross-sectional micrograph of ZnO film grown on (a) Pt/Ti/Si substrate, (b) Pt/Ti/SiC substrate, and (c) AFM image of ZnO film grown on Pt/Ti/SiC substrate.

Figure 3
figure 3

\(S_{11}\) parameter for fabricated ZnO-based HBAR device on (a) Pt/Ti/\(SiO_2\)/Si and (b) Pt/Ti/SiC substrate. (c) \(Z_{11}\) parameter for fabricated ZnO-based HBAR device on Pt/Ti/SiC substrate.

Electro-acoustic characterization

The measured reflection coefficient (\(S_{11}\)) parameter of the fabricated ZnO-based HBAR on the Si and SiC demonstrates multiple resonances over a very wide band (up to 7 GHz), as shown in Fig. 3a,b, respectively. The strongest excited resonances for the ZnO-HBAR on Si and SiC are centered at frequencies of 1.85 GHz and 5.25 GHz, respectively. ZnO has a longitudinal acoustic velocity of approximately 6400 m/s and a shear acoustic velocity of about 2770 m/s.25 The strong resonance frequency (\(f_n\)) of the HBAR can be approximated using the expression \(f_n\) = \(v_a\)/2t where \(v_a\) and t are the acoustic velocity and thickness of the piezoelectric film, respectively.4,26 In literature, it is reported that if the c-axis of ZnO film is perfectly oriented with respect to the normal of the substrate surface (Zero tilted angle), then the effective electromechanical coupling coefficient for longitudinal acoustic propagation (\(k_{L, eff}^2\)) is around 8.53\(\%\) and for shear acoustic propagation (\(k_{S, eff}^2\)) is 0\(\%\). However, if the c-axis of the ZnO is tilted at any angle with the normal of the substrate, then the \(k_{S, eff}^2\) for shear mode acoustic wave takes precedence over the \(k_{L, eff}^2\) for longitudinal mode acoustic wave.25 In this study, the c-plane of ZnO film is not highly oriented along the normal of the Si substrate, as evidenced by the XRD study and cross-sectional SEM micrographs in Figs. 1 and 2. Additionally, Si has relatively high longitudinal acoustic propagation losses (8.3 dB/cm @ 1 GHz), which are contrasted with its shear acoustic propagation losses (3.0 dB/cm @ 1 GHz) and a lower acoustic velocity than the other substrate materials.23 Hence, HBAR on a Si substrate only exhibits shear resonance. On the other hand, ZnO film is highly oriented along the (0002) direction on the SiC substrate, which is observed from the rocking curve analysis of XRD with an FWHM of 2.45\(^\circ\) and cross-sectional SEM micrograph in Fig. 2 compared to a Si substrate. Additionally, SiC is widely known for having low acoustic losses in both longitudinal and shear acoustic propagations (0.4 and 0.3 dB/cm @ 1 GHz) and a high acoustic velocity when compared to Si substrates.23 Therefore, the ZnO-based HBAR mounted to a SiC substrate demonstrates both shear and longitudinal resonance.

Figure 3c represents the measured impedance, or \(Z_{11}\) parameter, of the HBAR close to the strongest excited resonances on the SiC. The frequency range between each narrow resonance depends on the thickness (\(t_s\)) of the substrate since the acoustic energy from the piezoelectric layer is coupled to it. This frequency spacing (\(\Delta\) \(f_{overtone}\)) between narrow resonances is determined as \(\Delta\) \(f_{overtone}\) = \(v_s\)/2\(t_s\), where \(v_s\) is the acoustic velocity of the substrate.4 The computed acoustic velocity from the equation is often a few percent lower than the real acoustic velocity because this expression is produced by ignoring the action of the piezoelectric layer on the substrate. The equation below describes the discrepancy between the calculated and actual acoustic velocities.4

Related articles

BlockDAG’s CEO and Team Announced: Expected to Surpass Hedera and Polygon with a  Projection

BlockDAG’s CEO and Team Announced: Expected to Surpass Hedera and Polygon with a $1 Projection

30 July 2024
VeChain (VET) And Hedera (HBAR) Triple Red Charts. Rollblock (RBLK) Seems The Summer Sure Money Bet – Times Tabloid

VeChain (VET) And Hedera (HBAR) Triple Red Charts. Rollblock (RBLK) Seems The Summer Sure Money Bet – Times Tabloid

28 July 2024

$$\begin{aligned} v_{actual} – v_{calc} = v_{calc} \frac{\rho _p l_p}{\rho _s l_s} \end{aligned}$$

(1)

where the mass density and thickness of the substrate are represented by \(\rho _s\) and \(l_s\), respectively, and those of the piezoelectric film are represented by \(\rho _p\) and \(l_p\). The measured \(\Delta\) \(f_{overtone}\) is around 12.9 and 17.8 MHz for the HBAR on the Si (thickness 250 ± 5 \(\,{\upmu }\textrm{m}\)) and SiC (thickness 350 ± 5 \({\upmu }\textrm{m}\)), respectively. After the acoustic velocity has been rectified using the aforementioned equation, the corrected acoustic velocities of the Si and SiC substrates are esteemed to be 6490 and 12500 m/sec, respectively. The acoustic velocity for the Si substrate is measured to be greater than the shear acoustic velocity value, despite the fact that it is remarkably equivalent to the reported longitudinal acoustic velocity value for the SiC substrate.23,27 This multitude of modes offers a special opportunity to use the HBAR as a biofluid sensor.

[crypto-donation-box]
Figure 4
figure 4

(a) The measured and mBVD fitted \(S_{11}\) parameter and phase (inset) of ZnO-based HBAR resonator on SiC substrate at 5.25 GHz resonance, (b) The equivalent circuit diagram of mBVD model.

To comprehend the detailed behavior of device parameters, a modified Butterworth-Van Dyke (mBVD) model has been designed using Advance Design System (ADS, Keysight) software. Figure 4a depicts a typically measured and mBVD fitted \(S_{11}\) parameter for ZnO-based HBAR on a SiC substrate at 5.25 GHz resonance. The mBVD model comprises circuit parameters such as motional resistance (\(R_m\)), motional capacitance (\(C_m\)), motional inductance (\(L_m\)), and static capacitance (\(C_0\)), resistance (\(R_0\)), which is shown as an equivalent circuit in Fig. 4b. From the equivalent circuit, the \(f_r\) is the resonance frequency where the series resonance occurs, \(f_a\) is the anti-resonance frequency where the parallel resonance occurs, and the effective electromechanical coupling coefficient (\(k_{eff}^2\)) is given by the below equations.

$$\begin{aligned} f_r= & {} \frac{1}{2\pi \sqrt{L_m C_m}} ~~~ and ~~~ f_a = \frac{1}{2\pi \sqrt{L_m(C_m^{-1}+C_0^{-1})^{-1}}} \end{aligned}$$

(2)

$$\begin{aligned} k_{eff}^2= & {} \frac{\pi ^2}{4}. \frac{f_r}{f_a}. \left[ 1 – \frac{f_r}{f_a} \right] \end{aligned}$$

(3)

The quality factor of the HBAR device on SiC substrate at the strongest excited resonance is measured using the new Q approach based on \(S_{11}\) parameter proposed by Feld et al. and it is related as follows;28,29

Cryptohopper
ADVERTISEMENT

$$\begin{aligned} Q = \omega . \bigg |\frac{dS_{11}}{d\omega }\bigg |. \frac{1}{1 – |S_{11}|^2} \end{aligned}$$

(4)

Table 1 The measured and mBVD fitted \(S_{11}\) parameters of ZnO-based HBAR resonator and their f.Q values on Si and SiC substrate.
Table 2 ZnO-based HBAR resonator and their f.Q values on various substrate.

The electromechanical characteristics extracted from the mBVD model and the Q-factor of HBAR on Si and SiC substrates at the strongest excited resonances using the new Q approach are listed in Table 1. The product of resonance frequency and the measured quality factor (f.Q products) are then determined for the HBAR devices. We observed that the resonators for Si and SiC substrates, respectively, exhibit an f.Q product of 0.06 \(\times\) 10\(^{13}\) and 4.1 \(\times\) 10\(^{13}\) Hz. Pang et al., Baumgartel et al. and Zhang et al. has reported that the f.Q product of ZnO-based HBAR on Sapphire are 0.9 \(\times\) 10\(^{13}\), 4.5 \(\times\) 10\(^{13}\) and 4.8 \(\times\) 10\(^{13}\), respectively, using Lakin’s Q method (Table 2).4,20,21 Here, we have also estimated the f.Q value using Lakin’s Q method for HBAR devices on SiC, and reveals as 6.5 \(\times\) 10\(^{13}\) Hz, which, to the best of our knowledge stands out as the best among them. Using the novel Q approach developed by Feld et al., the f.Q product of ZnO-based HBAR on Diamond is reported by Gosavi et al. as 0.3 \(\times\) 10\(^{13}\), which is substantially lower than this finding22 .

Source link

Tags: 5GHzAcousticBulkexcitationhighovertoneresonatorSiCSubstrateZnObased
Share76Tweet47
Ledger Nano X - The secure hardware wallet
Previous Post

Everlodge Presale Lures Ripple (XRP) and Cardano Investors: Here’s Why

Next Post

Crypto Market Selloff To Intensify After FOMC Minutes Release?

Related Posts

BlockDAG’s CEO and Team Announced: Expected to Surpass Hedera and Polygon with a  Projection

BlockDAG’s CEO and Team Announced: Expected to Surpass Hedera and Polygon with a $1 Projection

30 July 2024
0

In the latest Hedera (HBAR) update, the integration of Blade, a self-custody Web3 wallet, demonstrates Hedera’s commitment to simplifying digital...

VeChain (VET) And Hedera (HBAR) Triple Red Charts. Rollblock (RBLK) Seems The Summer Sure Money Bet – Times Tabloid

VeChain (VET) And Hedera (HBAR) Triple Red Charts. Rollblock (RBLK) Seems The Summer Sure Money Bet – Times Tabloid

28 July 2024
0

VeChain and Hedera have been in freefall since the start of the March correction. Despite both being fundamentally solid projects...

400,000 New Hedera Accounts in One Week: Blade Wallet in

400,000 New Hedera Accounts in One Week: Blade Wallet in

25 July 2024
0

Hedera Network is growing with a massive 400,000 new accounts bagged in one week. The network is looking to serve...

Why Whales Are Betting Big on WW3Shiba and Shifting from Dogecoin!

Why Whales Are Betting Big on WW3Shiba and Shifting from Dogecoin!

24 July 2024
0

Hedera (HBAR) is capitalizing on its innovative technology to challenge Bitcoin's (BTC) legacy. Bitcoin continues to shrug off challenges from...

This New Crypto Presale Has Gone Viral In July As HBAR and FIL Holders Are Lured By 100x Potential

This New Crypto Presale Has Gone Viral In July As HBAR and FIL Holders Are Lured By 100x Potential

22 July 2024
0

As Bitcoin climbs to its all-time high, investors holding altcoins like Hedera (HBAR) and Filecoin (FIL) are considering new tokens...

Load More
Next Post
Crypto Market Selloff To Intensify After FOMC Minutes Release?

Crypto Market Selloff To Intensify After FOMC Minutes Release?

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Plugin Install : Widget Tab Post needs JNews - View Counter to be installed
  • Trending
  • Comments
  • Latest
CryptoQuant Predicts BNB To Hit ,000

CryptoQuant Predicts BNB To Hit $1,000

11 September 2025
Morning Minute: Solana's New Path to ATH – Yahoo Finance

Morning Minute: Solana's New Path to ATH – Yahoo Finance

11 September 2025
BNB Price Prediction: Why New Crypto Money Is Pouring Into BlockchainFX, the Top Presale Past M – CoinCentral

BNB Price Prediction: Why New Crypto Money Is Pouring Into BlockchainFX, the Top Presale Past $7M – CoinCentral

11 September 2025
Why Did Linea (LINEA) Price Drop 30% Post-Launch?

Why Did Linea (LINEA) Price Drop 30% Post-Launch?

11 September 2025

About Us

We publish a comprehensive news feed covering all news relevant to the crypto user, covering main industry news, politics and regulation as well as consumer-level “news you can use” (practical stuff), including handy DIY tips, links to useful tools, unbiased reviews and opinions revolving around cryptocurrency. Simple logic and real-world examples are preferred before technical jargon and personal rants.

Categories

  • Altcoin
  • ApeCoin
  • Bitcoin
  • Blockchain
  • BNB
  • Cardano
  • Cryptocurrency
  • DOGE
  • DOT
  • Ethereum
  • HBAR
  • Litecoin
  • Market
  • Meta News
  • Mining
  • NFT
  • QNT
  • Regulation
  • SHIBA
  • Solano
  • Tether
  • Uncategorized
  • XDC
  • XLM
  • XRP

What’s New Here!

  • CryptoQuant Predicts BNB To Hit $1,000
  • Morning Minute: Solana's New Path to ATH – Yahoo Finance
  • BNB Price Prediction: Why New Crypto Money Is Pouring Into BlockchainFX, the Top Presale Past $7M – CoinCentral
  • Why Did Linea (LINEA) Price Drop 30% Post-Launch?
  • Pump.fun Price Jumps 42% in a Week, Bulls Eye $0.0069 Resistance

Subscribe Now

Our Partner

Round Main Logo
  • About Us
  • Privacy Policy
  • Contact Us

© 2022-2025 coin24h.com

No Result
View All Result
  • Home
  • Cryptocurrency
    • Bitcoin
    • Ethereum
    • XRP
    • Litecoin
    • Altcoin
    • Cardano
    • Tether
    • DOGE
    • Solano
    • XLM
    • DOT
    • XDC
    • SHIBA
    • BNB
    • Ape
    • HBAR
    • QNT
  • Blockchain
  • Regulation
  • Market
  • Live
    • Prices
    • ICO
  • Meta
    • NFT
  • Technical Analysis
    • XRP
    • BTC
    • XLM
    • ADA
    • TETHER
    • ETC
    • ETH
    • DOGE
    • LTC
  • Exchange
  • Mining

© 2020 coin24h.com

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In
  • bitcoinBitcoin (BTC) $ 114,307.00
  • ethereumEthereum (ETH) $ 4,465.37
  • xrpXRP (XRP) $ 3.02
  • tetherTether (USDT) $ 1.00
  • bnbBNB (BNB) $ 899.34
  • solanaSolana (SOL) $ 227.68
  • usd-coinUSDC (USDC) $ 0.999775
  • staked-etherLido Staked Ether (STETH) $ 4,453.74
  • dogecoinDogecoin (DOGE) $ 0.251707
  • tronTRON (TRX) $ 0.347696
  • cardanoCardano (ADA) $ 0.891840
  • wrapped-stethWrapped stETH (WSTETH) $ 5,382.80
  • chainlinkChainlink (LINK) $ 24.15
  • wrapped-beacon-ethWrapped Beacon ETH (WBETH) $ 4,809.52
  • hyperliquidHyperliquid (HYPE) $ 54.08
  • wrapped-bitcoinWrapped Bitcoin (WBTC) $ 114,342.00
  • ethena-usdeEthena USDe (USDE) $ 1.00
  • suiSui (SUI) $ 3.64
  • stellarStellar (XLM) $ 0.393423
  • figure-helocFigure Heloc (FIGR_HELOC) $ 0.992743
  • avalanche-2Avalanche (AVAX) $ 29.03
  • wrapped-eethWrapped eETH (WEETH) $ 4,794.33
  • bitcoin-cashBitcoin Cash (BCH) $ 599.95
  • wethWETH (WETH) $ 4,460.87
  • hedera-hashgraphHedera (HBAR) $ 0.240351
  • litecoinLitecoin (LTC) $ 117.28
  • leo-tokenLEO Token (LEO) $ 9.56
  • crypto-com-chainCronos (CRO) $ 0.260759
  • the-open-networkToncoin (TON) $ 3.19
  • usdsUSDS (USDS) $ 0.999604
  • shiba-inuShiba Inu (SHIB) $ 0.000013
  • binance-bridged-usdt-bnb-smart-chainBinance Bridged USDT (BNB Smart Chain) (BSC-USD) $ 1.00
  • coinbase-wrapped-btcCoinbase Wrapped BTC (CBBTC) $ 114,203.00
  • polkadotPolkadot (DOT) $ 4.22
  • whitebitWhiteBIT Coin (WBT) $ 43.39
  • uniswapUniswap (UNI) $ 9.90
  • ethena-staked-usdeEthena Staked USDe (SUSDE) $ 1.20
  • world-liberty-financialWorld Liberty Financial (WLFI) $ 0.201199
  • ethenaEthena (ENA) $ 0.774045
  • mantleMantle (MNT) $ 1.56
  • moneroMonero (XMR) $ 271.95
  • aaveAave (AAVE) $ 306.40
  • bitget-tokenBitget Token (BGB) $ 4.96
  • pepePepe (PEPE) $ 0.000011
  • daiDai (DAI) $ 0.999592
  • okbOKB (OKB) $ 194.60
  • bittensorBittensor (TAO) $ 361.62
  • worldcoin-wldWorldcoin (WLD) $ 1.71
  • nearNEAR Protocol (NEAR) $ 2.73
  • jito-staked-solJito Staked SOL (JITOSOL) $ 279.75